In this work we present results on fixed points, pairs of coincidence points and best approximation for ε-semicontinuous mappings in metric trees. It is a generalization of the similar properties of upper and almost lower semicontinuous mappings.
@article{bwmeta1.element.doi-10_2478_v10062-008-0013-3, author = {Bo\.zena Pi\k atek}, title = {Best approximation of coincidence points in metric trees}, journal = {Annales UMCS, Mathematica}, volume = {62}, year = {2008}, pages = {113-121}, zbl = {1182.54055}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10062-008-0013-3} }
Bożena Piątek. Best approximation of coincidence points in metric trees. Annales UMCS, Mathematica, Tome 62 (2008) pp. 113-121. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10062-008-0013-3/
Aksoy, A. G., Khamsi, M. A., A selection theorem in metric trees, Proc. Amer. Math. Soc. 134 (2006), 2957-2966. | Zbl 1102.54022
Aubin, J.-P., Frankowska, H., Set-valued Analysis, Birkhäuser Boston, Inc., Boston, MA, 1990. | Zbl 0713.49021
Espínola, R., Kirk, W. A., Fixed point theorems in R-trees with applications to graph theory, Topology Appl. 153 (2006), 1046-1055.[WoS] | Zbl 1095.54012
Kirk, W. A., Panyanak, B., Best approximation in R-trees, Numer. Funct. Anal. Optim. 28 (2007), 681-690.[WoS] | Zbl 1132.54025
Kuczma, M., An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's Equation and Jensen Inequality, Uniwersytet Śląski, Katowice, Państwowe Wydawnictwo Naukowe (PWN), Warszawa, 1985. | Zbl 0555.39004
Markin, J. T., Fixed points, selections and best approximation for multivalued mappings inR-trees, Nonlinear Anal. 67 (2007), 2712-2716.[WoS] | Zbl 1128.47052