Parallelograms inscribed in a curve having a circle as π/2-isoptic
Andrzej Miernowski
Annales UMCS, Mathematica, Tome 62 (2008), p. 105-111 / Harvested from The Polish Digital Mathematics Library

Jean-Marc Richard observed in [7] that maximal perimeter of a parallelogram inscribed in a given ellipse can be realized by a parallelogram with one vertex at any prescribed point of ellipse. Alain Connes and Don Zagier gave in [4] probably the most elementary proof of this property of ellipse. Another proof can be found in [1]. In this note we prove that closed, convex curves having circles as π/2-isoptics have the similar property.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:268006
@article{bwmeta1.element.doi-10_2478_v10062-008-0012-4,
     author = {Andrzej Miernowski},
     title = {Parallelograms inscribed in a curve having a circle as $\pi$/2-isoptic},
     journal = {Annales UMCS, Mathematica},
     volume = {62},
     year = {2008},
     pages = {105-111},
     zbl = {1182.52004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10062-008-0012-4}
}
Andrzej Miernowski. Parallelograms inscribed in a curve having a circle as π/2-isoptic. Annales UMCS, Mathematica, Tome 62 (2008) pp. 105-111. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10062-008-0012-4/

Berger, M., Geometrie, Vol. 2, Nathan, Paris, 1990.

Cieślak, W., Miernowski, A. and Mozgawa, W., Isoptics of a strictly convex curve, Global Differential Geometry and Global Analysis, 1990 (Berlin), Lecture Notes in Math., 1481, Springer, Berlin, 1991, 28-35. | Zbl 0739.53001

Cieślak, W., Miernowski, A. and Mozgawa, W., Isoptics of a strictly convex curve II, Rend. Sem. Mat. Univ. Padova 96 (1996), 37-49. | Zbl 0881.53003

Connes, A., Zagier, D., A property of parallelograms inscribed in ellipses, Amer. Math. Monthly 114 (2007), 909-914. | Zbl 1140.51010

Green, J. W., Sets subtending a constant angle on a circle, Duke Math. J. 17 (1950), 263-267. | Zbl 0039.18201

Matsuura, S., On nonconvex curves of constant angle, Functional analysis and related topics, 1991 (Kyoto), Lecture Notes in Math., 1540, Springer, Berlin, 1993, 251-268.

Richard, J-M., Safe domain and elementary geometry, Eur. J. Phys. 25 (2004), 835-844.[Crossref] | Zbl 1162.70320

Wunderlich, W., Kurven mit isoptischem Kreis, Aequationes Math. 6 (1971), 71-78. | Zbl 0215.50103