In this paper we introduce a class of increasing homeomorphic self-mappings of R. We define a harmonic extension of such functions to the upper halfplane by means of the Poisson integral. Our main results give some sufficient conditions for quasiconformality of the extension.
@article{bwmeta1.element.doi-10_2478_v10062-008-0011-5, author = {Andrzej Michalski}, title = {Sufficient conditions for quasiconformality of harmonic mappings of the upper halfplane onto itself}, journal = {Annales UMCS, Mathematica}, volume = {62}, year = {2008}, pages = {91-104}, zbl = {1179.30016}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10062-008-0011-5} }
Andrzej Michalski. Sufficient conditions for quasiconformality of harmonic mappings of the upper halfplane onto itself. Annales UMCS, Mathematica, Tome 62 (2008) pp. 91-104. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10062-008-0011-5/
Ahlfors, L. V., Lectures on Quasiconformal Mappings, Van Nostrand Mathematical Studies, D. Van Nostrand, Princeton, 1966.
Kalaj, D., Pavlović, M., Boundary correspondence under quasiconformal harmonic diffeomorphisms of a half-plane, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 30 (2005), 159-165. | Zbl 1071.30016
Lehto, O., Virtanen, K. I., Quasiconformal Mappings in the Plane, 2nd ed., Grundlehren der matematischen Wissenschaften 126, Springer-Verlag, Berlin, 1973. | Zbl 0267.30016
Pearson, K., Tables of the Incomplete Beta-Function, Cambridge Univ. Press, Cambridge, 1934. | Zbl 0008.30403