Smith normal form of a matrix of generalized polynomials with rational exponents
Miroslav Kureš ; Ladislav Skula
Annales UMCS, Mathematica, Tome 62 (2008), p. 81-90 / Harvested from The Polish Digital Mathematics Library

It is proved that generalized polynomials with rational exponents over a commutative field form an elementary divisor ring; an algorithm for computing the Smith normal form is derived and implemented.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:267665
@article{bwmeta1.element.doi-10_2478_v10062-008-0010-6,
     author = {Miroslav Kure\v s and Ladislav Skula},
     title = {Smith normal form of a matrix of generalized polynomials with rational exponents},
     journal = {Annales UMCS, Mathematica},
     volume = {62},
     year = {2008},
     pages = {81-90},
     zbl = {1179.65047},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10062-008-0010-6}
}
Miroslav Kureš; Ladislav Skula. Smith normal form of a matrix of generalized polynomials with rational exponents. Annales UMCS, Mathematica, Tome 62 (2008) pp. 81-90. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10062-008-0010-6/

Brown, W. C., Matrices over Commutative Rings, Marcel Dekker, 1993.[WoS] | Zbl 0782.15001

Cohen, H., Hermite and Smith normal form algorithms over Dedekind domains, Math. Comp. 65 (1996), 1681-1699. | Zbl 0853.11100

Cohn, P. M., On the structure of GL2 of a ring, Publications Mathématiques de l'I. H.É. S. 30 (1966), 5-53.

Delzell, C. N., Extension of Pólya's theorems to signomials with rational exponents, Preprint available on

Gantmacher, F. R., The Theory of Matrices, Vol. 1, AMS Chelsea Publishing, Providence, RI, 1998. | Zbl 0927.15002

Gillman, L., Henriksen, M., Some remarks about elementary divisor rings, Trans. Am. Math. Soc. 82 (1956), 362-365. | Zbl 0073.02203

Helmer, O., The elementary divisor theorem for certain rings without chain condition, Bull. Am. Math. Soc. 49 (1943), 225-236. | Zbl 0060.07606

Kannan, A., Bachem, A., Polynomial algorithms for computing the Smith and Hermite normal forms of an integer matrix, SIAM J. Comput. 8 (1979), 499-507. | Zbl 0446.65015

Kaplansky, I., Elementary divisors and modules, Trans. Am. Math. Soc. 66 (1949), 464-491. | Zbl 0036.01903

Karásek, J., Šlapal, J., Polynomials and Generalized Polynomials in Control Theory, (Czech), CERM Academic Publishing Brno, 2007.

Kureš, M., On the computation of Smith normal form of a matrix of generalized polynomials with rational exponents, in: Aplimat 2007, Proceedings of the International Conference Aplimat, Bratislava, Slovakia, February 6-9, 2007, Slovak University of Technology, 2007, pp. 103-108.

Pascolletti, A.: SmithForm.m, version 1.0 (2005). The Mathematica package available on

Suslin, A. A., On the structure of the special linear group over polynomial rings, Math. USSR, Izv. 11 (1977), 221-238. | Zbl 0378.13002

Villard, G., Computation of the Smith normal form of polynomial matrices, in: ISSAC '93, Proceedings of the 1993 international symposium on Symbolic and algebraic computation, Kiev, Ukraine, July 6-8, 1993, ACM Press Baltimore, 1993, pp. 209-217. | Zbl 0964.65507