If p(z) be a polynomial of degree n, which does not vanish in |z| < k, k < 1, then it was conjectured by Aziz [Bull. Austral. Math. Soc. 35 (1987), 245-256] that [...] In this paper, we consider the case k < r < 1 and present a generalization as well as improvement of the above inequality.
@article{bwmeta1.element.doi-10_2478_v10062-008-0007-1, author = {K. Dewan and Sunil Hans}, title = {Growth of polynomials whose zeros are outside a circle}, journal = {Annales UMCS, Mathematica}, volume = {62}, year = {2008}, pages = {61-65}, zbl = {1180.30001}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10062-008-0007-1} }
K. Dewan; Sunil Hans. Growth of polynomials whose zeros are outside a circle. Annales UMCS, Mathematica, Tome 62 (2008) pp. 61-65. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10062-008-0007-1/
Ankeny, N. C., Rivlin, T. J., On a theorem of S. Bernstein, Pacific J. Math. 5 (1955), 849-852. | Zbl 0067.01001
Aziz, A., Growth of polynomials whose zeros are within or outside a circle, Bull. Austral. Math. Soc. 35 (1987), 247-256. | Zbl 0603.30003
Govil, N. K., On a theorem of S. Bernstein, Proc. Nat. Acad. Sci. India Sect. A 50 (1980), 50-52. | Zbl 0493.30003
Pólya, G., Szegö, G., Aufgaben und Lehrsatze aus der Analysis, Springer-Verlag, Berlin, 1925. | Zbl 51.0173.01