Each oval and a natural number n ≥ 3 generate an annulus which possesses the Poncelet's porism property. A necessary and sufficient condition of existence of circuminscribed n-gons in an annulus is given.
@article{bwmeta1.element.doi-10_2478_v10062-008-0005-3, author = {Waldemar Cie\'slak and El\.zbieta Szczygielska}, title = {Circuminscribed polygons in a plane annulus}, journal = {Annales UMCS, Mathematica}, volume = {62}, year = {2008}, pages = {49-53}, zbl = {1187.53002}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10062-008-0005-3} }
Waldemar Cieślak; Elżbieta Szczygielska. Circuminscribed polygons in a plane annulus. Annales UMCS, Mathematica, Tome 62 (2008) pp. 49-53. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10062-008-0005-3/
Berger, M., Geometry I, Springer-Verlag, New York, 1994.
Bos, H. J. M., Kers, C., Oort, F. and Raven, D. W., Poncelet's closure theorem, Exposition. Math. 5 (1987), 289-364. | Zbl 0633.51014
Cieślak, W., Miernowski, A. and Mozgawa, W., Isoptics of a closed strictly convex curve, Global differential geometry and global analysis (Berlin, 1990), Lecture Notes in Math., 1481, Springer, Berlin, 1991, 28-35. | Zbl 0739.53001
Laugwitz, D., Differential and Riemannian Geometry, Academic Press, New York-London, 1965. | Zbl 0139.38903
Mozgawa, W., Bar billiards and Poncelet's porism, to appear.[WoS] | Zbl 1165.53303
Santalo, L., Integral geometry and geometric probability, Encyclopedia of Mathematics and Its Applications, Vol. 1, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976.
Weisstein, E. W., Poncelet's Porism, From MathWorld-A Wolfram Web Resource. http://mathworld.wolfram.com/ponceletsPorism.html