Continuity of the quenching time in a semilinear parabolic equation
Théodore Boni ; Firmin N'Gohisse
Annales UMCS, Mathematica, Tome 62 (2008), p. 37-48 / Harvested from The Polish Digital Mathematics Library

In this paper, we consider the following initial-boundary value problem [...] where Ω is a bounded domain in RN with smooth boundary ∂Ω, p > 0, Δ is the Laplacian, v is the exterior normal unit vector on ∂Ω. Under some assumptions, we show that the solution of the above problem quenches in a finite time and estimate its quenching time. We also prove the continuity of the quenching time as a function of the initial data u0. Finally, we give some numerical results to illustrate our analysis.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:267695
@article{bwmeta1.element.doi-10_2478_v10062-008-0004-4,
     author = {Th\'eodore Boni and Firmin N'Gohisse},
     title = {Continuity of the quenching time in a semilinear parabolic equation},
     journal = {Annales UMCS, Mathematica},
     volume = {62},
     year = {2008},
     pages = {37-48},
     zbl = {1183.35025},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10062-008-0004-4}
}
Théodore Boni; Firmin N'Gohisse. Continuity of the quenching time in a semilinear parabolic equation. Annales UMCS, Mathematica, Tome 62 (2008) pp. 37-48. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10062-008-0004-4/

Abia, L. M., López-Marcos, J. C. and Martínez, J., On the blow-up time convergence of semidiscretizations of reaction-diffusion equations, Appl. Numer. Math. 26 (1998), 399-414.[Crossref] | Zbl 0929.65070

Acker, A., Walter, W., The quenching problem for nonlinear parabolic differential equations, Ordinary and partial differential equations (Proc. Fourth Conf., Univ. Dundee, Dundee, 1976), Lecture Notes in Math., Vol. 564, Springer, Berlin, 1976, 1-12. | Zbl 0338.35054

Acker, A., Kawohl, B., Remarks on quenching, Nonlinear Anal. 13 (1989), 53-61. | Zbl 0676.35021

Bandle, C., Braumer, C. M., Singular perturbation method in a parabolic problem with free boundary, BAIL IV (Novosibirsk, 1986), Boole Press Conf. Ser., 8, Boole, Dún Laoghaire, 1986, 7-14.

Baras, P., Cohen, L., Complete blow-up after Tmaxfor the solution of a semilinear heat equation, J. Funct. Anal. 71 (1987), 142-174.[Crossref] | Zbl 0653.35037

Boni, T. K., Extinction for discretizations of some semilinear parabolic equations, C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), 795-800. | Zbl 0999.35004

Boni, T. K., On quenching of solutions for some semilinear parabolic equations of second order, Bull. Belg. Math. Soc. 7 (2000), 73-95. | Zbl 0969.35077

Cortazar, C., del Pino, M. and Elgueta, M., On the blow-up set for ut = Δum + um, m > 1, Indiana Univ. Math. J. 47 (1998), 541-561. | Zbl 0916.35056

Cortazar, C., del Pino, M. and Elgueta, M., Uniqueness and stability of regional blow-up in a porous-medium equation, Ann. Inst. H. Poincaré Anal. Non Linéare 19 (2002), 927-960. | Zbl 1018.35062

Deng, K., Levine, H. A, On the blow-up of ut at quenching, Proc. Amer. Math. Soc. 106 (1989), 1049-1056. | Zbl 0681.35008

Deng, K., Xu, M., Quenching for a nonlinear diffusion equation with singular boundary condition, Z. Angew. Math. Phys. 50 (1999), 574-584.[Crossref] | Zbl 0929.35012

Fermanian Kammerer, C., Merle, F. and Zaag, H., Stability of the blow-up profile of nonlinear heat equations from the dynamical system point of view, Math. Ann. 317 (2000), 195-237. | Zbl 0971.35038

Fila, M., Kawohl, B. and Levine, H. A., Quenching for quasilinear equations, Comm. Partial Differential Equations 17 (1992), 593-614. | Zbl 0801.35057

Fila, M., Levine, H. A., Quenching on the boundary, Nonlinear Anal. 21 (1993), 795-802. | Zbl 0809.35043

Friedman, A., McLeod, B., Blow-up of positive solutions of nonlinear heat equations, Indiana Univ. Math. J., 34 (1985), 425-477.[Crossref] | Zbl 0576.35068

Galaktionov, V. A., Boundary value problems for the nonlinear parabolic equation ut = Δuσ+1 + uβ, Differential Equations 17 (1981), 551-555. | Zbl 0478.35058

Galaktionov, V. A., Kurdjumov, S. P., Mihailov, A. P. and Samarskii, A. A., On unbounded solutions of the Cauchy problem for the parabolic equation ut = ∇(uσ∇u) + uβ, (Russian) Dokl. Akad. Nauk SSSR 252 (1980), no. 6, 1362-1364.

Galaktionov, V. A., Vazquez, J. L., Continuation of blow-up solutions of nonlinear heat equations in several space dimensions, Comm. Pure Appl. Math., 50 (1997), 1-67. | Zbl 0874.35057

Galaktionov, V. A., Vazquez, J. L., The problem of blow-up in nonlinear parabolic equation, Current developments in partial differential equations (Temuco, 1999). Discrete Contin. Dyn. Syst. 8 (2002), 399-433. | Zbl 1010.35057

Guo, J., On a quenching problem with Robin boundary condition, Nonlinear Anal. 17 (1991), 803-809. | Zbl 0762.35039

Groisman, P., Rossi, J. D., Dependence of the blow-up time with respect to parameters and numerical approximations for a parabolic problem, Asymptot. Anal. 37 (2004), 79-91. | Zbl 1047.35064

Groisman, P., Rossi, J. D. and Zaag, H., On the dependence of the blow-up time with respect to the initial data in a semilinear parabolic problem, Comm. Partial Differential Equations 28 (2003), 737-744. | Zbl 1036.35025

Herrero, M. A., Velázquez, J. J. L., Generic behaviour of one-dimensional blow up patterns, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 19 (1992), no. 3, 381-450. | Zbl 0798.35081

Kawarada, H., On solutions of initial-boundary problem for ut = uxx + 1/(1 - u), Publ. Res. Inst. Math. Sci. 10 (1974/75), 729-736.[Crossref] | Zbl 0306.35059

Kirk, C. M., Roberts, C. A., A review of quenching results in the context of nonlinear Volterra equations, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 10 (2003), 343-356. | Zbl 1030.35099

Ladyzenskaya, A., Solonnikov, V. A. and Ural'ceva, N. N., Linear and quasilinear equations parabolic type, Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R. I., 1967.

Levine, H. A., The phenomenon of quenching: a survey, Trends in the theory and practice of nonlinear analysis (Arlington, Tex., 1984), North-Holland Math. Stud., 110, North-Holland, Amsterdam, 1985, 275-286.

Levine, H. A., The quenching of solutions of linear parabolic and hyperbolic equations with nonlinear boundary conditions, SIAM J. Math. Anal. 14 (1983), 1139-1152. | Zbl 0538.35048

Levine, H. A., Quenching, nonquenching and beyond quenching for solution of some parabolic equations, Ann. Math. Pura Appl. (4) 155 (1989), 243-260. | Zbl 0743.35010

Merle, F., Solution of a nonlinear heat equation with arbitrarily given blow-up points, Comm. Pure Appl. Math. 45 (1992), 293-300. | Zbl 0785.35012

Nakagawa, T., Blowing up of the finite difference solution to ut = uxx + u2, Appl. Math. Optim. 2 (1975/76), 337-350.[Crossref]

Phillips, D., Existence of solution of quenching problems, Appl. Anal. 24 (1987), 253-264.[Crossref] | Zbl 0633.35036

Protter, M. H., Weinberger, H. F., Maximum Principles in Differential Equations, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1967. | Zbl 0153.13602

Quittner, P., Continuity of the blow-up time and a priori bounds for solutions in superlinear parabolic problems, Houston J. Math. 29 (2003), no. 3, 757-799 (electronic). | Zbl 1034.35013

Sheng, Q., Khaliq, A. Q. M., A compound adaptive approach to degenerate nonlinear quenching problems, Numer. Methods Partial Differential Equations, 15 (1999), 29-47. | Zbl 0931.65096

Walter, W, Differential- und Integral-Ungleichungen und ihre Anwendung bei Abschätzungs- und Eindeutigkeits-problemen, (German) Springer Tracts in Natural Philosophy, Vol. 2, Springer-Verlag, Berlin-New York, 1964. | Zbl 0119.12205