Let Y be a fibered square of dimension (m1, m2, n1, n2). Let V be a finite dimensional vector space over. We describe all 21,m2,n1,n2 - canonical V -valued 1-form Θ TPrA (Y) → V on the r-th order adapted frame bundle PrA(Y).
@article{bwmeta1.element.doi-10_2478_v10062-008-0003-5, author = {Anna Bednarska}, title = {Canonical vector valued 1-forms on higher order adapted frame bundles over category of fibered squares}, journal = {Annales UMCS, Mathematica}, volume = {62}, year = {2008}, pages = {31-36}, zbl = {1190.58002}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10062-008-0003-5} }
Anna Bednarska. Canonical vector valued 1-forms on higher order adapted frame bundles over category of fibered squares. Annales UMCS, Mathematica, Tome 62 (2008) pp. 31-36. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10062-008-0003-5/
Doupovec, M., Mikulski, W. M., Gauge natural constructions on higher order principal prolongations, Ann. Polon. Math. 92 (2007), no. 1, 87-97. | Zbl 1133.58001
Kolář, I., Michor, P. W. and Slovák, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993. | Zbl 0782.53013
Kolář, I., Connections on fibered squares, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 59 (2005), 67-76.
Kurek, J., Mikulski, W. M., Canonical vector valued 1-forms on higher order adapted frame bundles, Arch. Math. (Brno) 44 (2008), 115-118. | Zbl 1212.58002
Mikulski, W. M., The jet prolongations of fibered-fibered manifolds and the flow operator, Publ. Math. Debrecen59 (3-4) (2001), 441-458. | Zbl 0996.58002