In this article, we formalize that every finite cyclic group is isomorphic to a direct product of finite cyclic groups which orders are relative prime. This theorem is closely related to the Chinese Remainder theorem ([18]) and is a useful lemma to prove the basis theorem for finite abelian groups and the fundamental theorem of finite abelian groups. Moreover, we formalize some facts about the product of a finite sequence of abelian groups.
@article{bwmeta1.element.doi-10_2478_v10037-012-0038-5, author = {Kenichi Arai and Hiroyuki Okazaki and Yasunari Shidama}, title = {Isomorphisms of Direct Products of Finite Cyclic Groups}, journal = {Formalized Mathematics}, volume = {20}, year = {2012}, pages = {343-347}, zbl = {1277.20067}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10037-012-0038-5} }
Kenichi Arai; Hiroyuki Okazaki; Yasunari Shidama. Isomorphisms of Direct Products of Finite Cyclic Groups. Formalized Mathematics, Tome 20 (2012) pp. 343-347. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10037-012-0038-5/
[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. K¨onig’s theorem. Formalized Mathematics, 1(3):589-593, 1990.
[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[5] Czesław Bylinski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[6] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[7] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[8] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[9] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[10] Czesław Bylinski. The sum and product of finite sequences of real numbers. FormalizedMathematics, 1(4):661-668, 1990.
[11] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[12] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5):841-845, 1990.
[13] Artur Korniłowicz. On the real valued functions. Formalized Mathematics, 13(1):181-187, 2005.
[14] Eugeniusz Kusak, Wojciech Leonczuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[15] Anna Lango and Grzegorz Bancerek. Product of families of groups and vector spaces. Formalized Mathematics, 3(2):235-240, 1992.
[16] Hiroyuki Okazaki, Noboru Endou, and Yasunari Shidama. Cartesian products of family of real linear spaces. Formalized Mathematics, 19(1):51-59, 2011, doi: 10.2478/v10037-011-0009-2.[Crossref] | Zbl 1276.46015
[17] Christoph Schwarzweller. The ring of integers, Euclidean rings and modulo integers. Formalized Mathematics, 8(1):29-34, 1999.
[18] Christoph Schwarzweller. Modular integer arithmetic. Formalized Mathematics, 16(3):247-252, 2008, doi:10.2478/v10037-008-0029-8.[Crossref]
[19] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341-347, 2003.
[20] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[21] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[22] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[23] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.