The paper introduces Cartesian products in categories without uniqueness of cod and dom. It is proven that set-theoretical product is the product in the category Ens [7].
@article{bwmeta1.element.doi-10_2478_v10037-012-0036-7, author = {Artur Korni\l owicz}, title = {Products in Categories without Uniqueness of cod and dom}, journal = {Formalized Mathematics}, volume = {20}, year = {2012}, pages = {303-307}, zbl = {1301.18007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10037-012-0036-7} }
Artur Korniłowicz. Products in Categories without Uniqueness of cod and dom. Formalized Mathematics, Tome 20 (2012) pp. 303-307. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10037-012-0036-7/
[1] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589-593, 1990.
[2] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[3] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[4] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[5] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[6] Beata Madras. Basic properties of objects and morphisms. Formalized Mathematics, 6(3):329-334, 1997.
[7] Zbigniew Semadeni and Antoni Wiweger. Wst¸ep do teorii kategorii i funktorów, volume 45 of Biblioteka Matematyczna. PWN, Warszawa, 1978. | Zbl 0445.18001
[8] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[9] Andrzej Trybulec. Many sorted sets. Formalized Mathematics, 4(1):15-22, 1993.
[10] Andrzej Trybulec. Categories without uniqueness of cod and dom. Formalized Mathematics, 5(2):259-267, 1996.
[11] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[12] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.