Cayley-Dickson construction produces a sequence of normed algebras over real numbers. Its consequent applications result in complex numbers, quaternions, octonions, etc. In this paper we formalize the construction and prove its basic properties.
@article{bwmeta1.element.doi-10_2478_v10037-012-0034-9, author = {Artur Korni\l owicz}, title = {Cayley-Dickson Construction}, journal = {Formalized Mathematics}, volume = {20}, year = {2012}, pages = {281-290}, zbl = {1288.17002}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10037-012-0034-9} }
Artur Korniłowicz. Cayley-Dickson Construction. Formalized Mathematics, Tome 20 (2012) pp. 281-290. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10037-012-0034-9/
[1] Grzegorz Bancerek. K¨onig’s theorem. Formalized Mathematics, 1(3):589-593, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Czesław Bylinski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[4] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[5] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[6] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[7] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[8] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[9] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[10] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.
[11] Eugeniusz Kusak, Wojciech Leonczuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[12] Michał Muzalewski and Wojciech Skaba. From loops to abelian multiplicative groups with zero. Formalized Mathematics, 1(5):833-840, 1990.
[13] Henryk Oryszczyszyn and Krzysztof Prazmowski. Real functions spaces. FormalizedMathematics, 1(3):555-561, 1990. | Zbl 0916.51004
[14] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
[15] Yasunari Shidama. The Banach algebra of bounded linear operators. Formalized Mathematics, 12(2):103-108, 2004.
[16] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[17] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341-347, 2003.
[18] Andrzej Trybulec and Czesław Bylinski. Some properties of real numbers. FormalizedMathematics, 1(3):445-449, 1990.
[19] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[20] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[21] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[22] Tetsuya Tsunetou, Grzegorz Bancerek, and Yatsuka Nakamura. Zero-based finite sequences. Formalized Mathematics, 9(4):825-829, 2001.
[23] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.