In this article we formalize one of the most important theorems of linear operator theory - the Closed Graph Theorem commonly used in a standard text book such as [10] in Chapter 24.3. It states that a surjective closed linear operator between Banach spaces is bounded.
@article{bwmeta1.element.doi-10_2478_v10037-012-0032-y, author = {Hideki Sakurai and Hiroyuki Okazaki and Yasunari Shidama}, title = {Banach's Continuous Inverse Theorem and Closed Graph Theorem}, journal = {Formalized Mathematics}, volume = {20}, year = {2012}, pages = {271-274}, zbl = {1283.46004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10037-012-0032-y} }
Hideki Sakurai; Hiroyuki Okazaki; Yasunari Shidama. Banach’s Continuous Inverse Theorem and Closed Graph Theorem. Formalized Mathematics, Tome 20 (2012) pp. 271-274. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10037-012-0032-y/
[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Czesław Bylinski. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.
[3] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[4] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[6] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[7] Czesław Bylinski. Introduction to real linear topological spaces. Formalized Mathematics, 13(1):99-107, 2005.
[8] Noboru Endou, Yasumasa Suzuki, and Yasunari Shidama. Real linear space of real sequences. Formalized Mathematics, 11(3):249-253, 2003.
[9] Eugeniusz Kusak, Wojciech Leonczuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[10] Isao Miyadera. Functional Analysis. Riko-Gaku-Sya, 1972.
[11] Takaya Nishiyama, Keiji Ohkubo, and Yasunari Shidama. The continuous functions on normed linear spaces. Formalized Mathematics, 12(3):269-275, 2004.
[12] Hiroyuki Okazaki, Noboru Endou, and Yasunari Shidama. Cartesian products of family of real linear spaces. Formalized Mathematics, 19(1):51-59, 2011, doi: 10.2478/v10037-011-0009-2.[Crossref] | Zbl 1276.46015
[13] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[14] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
[15] Yasunari Shidama. Banach space of bounded linear operators. Formalized Mathematics, 12(1):39-48, 2004.
[16] Wojciech A. Trybulec. Subspaces and cosets of subspaces in real linear space. FormalizedMathematics, 1(2):297-301, 1990.
[17] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[18] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[19] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[20] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.