Weak Completeness Theorem for Propositional Linear Time Temporal Logic
Mariusz Giero
Formalized Mathematics, Tome 20 (2012), p. 227-234 / Harvested from The Polish Digital Mathematics Library

We prove weak (finite set of premises) completeness theorem for extended propositional linear time temporal logic with irreflexive version of until-operator. We base it on the proof of completeness for basic propositional linear time temporal logic given in [20] which roughly follows the idea of the Henkin-Hasenjaeger method for classical logic. We show that a temporal model exists for every formula which negation is not derivable (Satisfiability Theorem). The contrapositive of that theorem leads to derivability of every valid formula. We build a tree of consistent and complete PNPs which is used to construct the model.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:268035
@article{bwmeta1.element.doi-10_2478_v10037-012-0027-8,
     author = {Mariusz Giero},
     title = {Weak Completeness Theorem for Propositional Linear Time Temporal Logic},
     journal = {Formalized Mathematics},
     volume = {20},
     year = {2012},
     pages = {227-234},
     zbl = {1285.03011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10037-012-0027-8}
}
Mariusz Giero. Weak Completeness Theorem for Propositional Linear Time Temporal Logic. Formalized Mathematics, Tome 20 (2012) pp. 227-234. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10037-012-0027-8/

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.

[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. | Zbl 06213858

[3] Grzegorz Bancerek. Introduction to trees. Formalized Mathematics, 1(2):421-427, 1990.

[4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.

[5] Grzegorz Bancerek. K¨onig’s lemma. Formalized Mathematics, 2(3):397-402, 1991.

[6] Grzegorz Bancerek. Joining of decorated trees. Formalized Mathematics, 4(1):77-82, 1993.

[7] Grzegorz Bancerek. Subtrees. Formalized Mathematics, 5(2):185-190, 1996.

[8] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.

[9] Czesław Bylinski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.

[10] Czesław Bylinski. Finite sequences and tuples of elements of a non-empty sets. FormalizedMathematics, 1(3):529-536, 1990.

[11] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.

[12] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.

[13] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.

[14] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.

[15] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.

[16] Mariusz Giero. The axiomatization of propositional linear time temporal logic. FormalizedMathematics, 19(2):113-119, 2011, doi: 10.2478/v10037-011-0018-1.[Crossref] | Zbl 1276.03018

[17] Mariusz Giero. The derivations of temporal logic formulas. Formalized Mathematics, 20(3):215-219, 2012, doi: 10.2478/v10037-012-0025-x.[Crossref] | Zbl 1285.03009

[18] Mariusz Giero. The properties of sets of temporal logic subformulas. Formalized Mathematics, 20(3):221-226, 2012, doi: 10.2478/v10037-012-0026-9.[Crossref] | Zbl 1285.03010

[19] Adam Grabowski. Hilbert positive propositional calculus. Formalized Mathematics, 8(1):69-72, 1999.

[20] Fred Kr¨oger and Stephan Merz. Temporal Logic and State Systems. Springer-Verlag, 2008. | Zbl 1169.03001

[21] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.

[22] Karol Pak. Continuity of barycentric coordinates in Euclidean topological spaces. FormalizedMathematics, 19(3):139-144, 2011, doi: 10.2478/v10037-011-0022-5.[Crossref] | Zbl 1276.57020

[23] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.

[24] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.

[25] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.

[26] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.

[27] Andrzej Trybulec. Defining by structural induction in the positive propositional language. Formalized Mathematics, 8(1):133-137, 1999.

[28] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

[29] Edmund Woronowicz. Many argument relations. Formalized Mathematics, 1(4):733-737, 1990.

[30] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

[31] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.