Simple Graphs as Simplicial Complexes: the Mycielskian of a Graph
Piotr Rudnicki ; Lorna Stewart
Formalized Mathematics, Tome 20 (2012), p. 161-174 / Harvested from The Polish Digital Mathematics Library

Harary [10, p. 7] claims that Veblen [20, p. 2] first suggested to formalize simple graphs using simplicial complexes. We have developed basic terminology for simple graphs as at most 1-dimensional complexes. We formalize this new setting and then reprove Mycielski’s [12] construction resulting in a triangle-free graph with arbitrarily large chromatic number. A different formalization of similar material is in [15].

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:267612
@article{bwmeta1.element.doi-10_2478_v10037-012-0019-8,
     author = {Piotr Rudnicki and Lorna Stewart},
     title = {Simple Graphs as Simplicial Complexes: the Mycielskian of a Graph},
     journal = {Formalized Mathematics},
     volume = {20},
     year = {2012},
     pages = {161-174},
     zbl = {1292.05116},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10037-012-0019-8}
}
Piotr Rudnicki; Lorna Stewart. Simple Graphs as Simplicial Complexes: the Mycielskian of a Graph. Formalized Mathematics, Tome 20 (2012) pp. 161-174. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10037-012-0019-8/

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.

[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. | Zbl 06213858

[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.

[4] Grzegorz Bancerek. Tarski’s classes and ranks. Formalized Mathematics, 1(3):563-567, 1990.

[5] Grzegorz Bancerek. Mizar analysis of algorithms: Preliminaries. Formalized Mathematics, 15(3):87-110, 2007, doi:10.2478/v10037-007-0011-x.[Crossref]

[6] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.

[7] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.

[8] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.

[9] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.

[10] Frank Harary. Graph theory. Addison-Wesley, 1969.

[11] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.

[12] J. Mycielski. Sur le coloriage des graphes. Colloquium Mathematicum, 3:161-162, 1955. | Zbl 0064.17805

[13] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.

[14] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990.

[15] Piotr Rudnicki and Lorna Stewart. The Mycielskian of a graph. Formalized Mathematics, 19(1):27-34, 2011, doi: 10.2478/v10037-011-0005-6.[Crossref] | Zbl 1276.05046

[16] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.

[17] Andrzej Trybulec. Many sorted sets. Formalized Mathematics, 4(1):15-22, 1993.

[18] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1(1):187-190, 1990.

[19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

[20] Oswald Veblen. Analysis Situs, volume V. AMS Colloquium Publications, 1931 | Zbl 0001.40604