The goal of this article is to formalize Ceva’s theorem that is in the [8] on the web. Alongside with it formalizations of Routh’s, Menelaus’ and generalized form of Ceva’s theorem itself are provided.
@article{bwmeta1.element.doi-10_2478_v10037-012-0018-9, author = {Boris A. Shminke}, title = {Routh's, Menelaus' and Generalized Ceva's Theorems}, journal = {Formalized Mathematics}, volume = {20}, year = {2012}, pages = {157-159}, zbl = {1277.51015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10037-012-0018-9} }
Boris A. Shminke. Routh’s, Menelaus’ and Generalized Ceva’s Theorems. Formalized Mathematics, Tome 20 (2012) pp. 157-159. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10037-012-0018-9/
[1] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[2] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[3] Akihiro Kubo. Lines in n-dimensional Euclidean spaces. Formalized Mathematics, 11(4):371-376, 2003.
[4] Akihiro Kubo and Yatsuka Nakamura. Angle and triangle in Euclidian topological space. Formalized Mathematics, 11(3):281-287, 2003.
[5] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[6] Marco Riccardi. Heron’s formula and Ptolemy’s theorem. Formalized Mathematics, 16(2):97-101, 2008, doi:10.2478/v10037-008-0014-2.[Crossref]
[7] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[8] Freek Wiedijk. Formalizing 100 theorems. http://www.cs.ru.nl/~freek/100/.
[9] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998.