Higher-Order Partial Differentiation
Noboru Endou ; Hiroyuki Okazaki ; Yasunari Shidama
Formalized Mathematics, Tome 20 (2012), p. 113-124 / Harvested from The Polish Digital Mathematics Library

In this article, we shall extend the formalization of [10] to discuss higher-order partial differentiation of real valued functions. The linearity of this operator is also proved (refer to [10], [12] and [13] for partial differentiation).

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:267676
@article{bwmeta1.element.doi-10_2478_v10037-012-0015-z,
     author = {Noboru Endou and Hiroyuki Okazaki and Yasunari Shidama},
     title = {Higher-Order Partial Differentiation},
     journal = {Formalized Mathematics},
     volume = {20},
     year = {2012},
     pages = {113-124},
     zbl = {1281.46024},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10037-012-0015-z}
}
Noboru Endou; Hiroyuki Okazaki; Yasunari Shidama. Higher-Order Partial Differentiation. Formalized Mathematics, Tome 20 (2012) pp. 113-124. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10037-012-0015-z/

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.

[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.

[3] Czesław Bylinski. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.

[4] Czesław Bylinski. Finite sequences and tuples of elements of a non-empty sets. FormalizedMathematics, 1(3):529-536, 1990.

[5] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.

[6] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.

[7] Czesław Bylinski. The sum and product of finite sequences of real numbers. FormalizedMathematics, 1(4):661-668, 1990.

[8] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.

[9] Noboru Endou and Yasunari Shidama. Completeness of the real Euclidean space. FormalizedMathematics, 13(4):577-580, 2005.

[10] Noboru Endou, Yasunari Shidama, and Keiichi Miyajima. Partial differentiation on normed linear spaces Rn. Formalized Mathematics, 15(2):65-72, 2007, doi:10.2478/v10037-007-0008-5.[Crossref]

[11] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.

[12] Takao Inou´e, Noboru Endou, and Yasunari Shidama. Differentiation of vector-valued functions on n-dimensional real normed linear spaces. Formalized Mathematics, 18(4):207-212, 2010, doi: 10.2478/v10037-010-0025-7.[Crossref]

[13] Takao Inou´e, Adam Naumowicz, Noboru Endou, and Yasunari Shidama. Partial differentiation of vector-valued functions on n-dimensional real normed linear spaces. FormalizedMathematics, 19(1):1-9, 2011, doi: 10.2478/v10037-011-0001-x.[Crossref] | Zbl 1276.26033

[14] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.

[15] Keiichi Miyajima and Yasunari Shidama. Riemann integral of functions from R into Rn. Formalized Mathematics, 17(2):179-185, 2009, doi: 10.2478/v10037-009-0021-y.[Crossref]

[16] Keiko Narita, Artur Kornilowicz, and Yasunari Shidama. More on the continuity of real functions. Formalized Mathematics, 19(4):233-239, 2011, doi: 10.2478/v10037-011-0032-3.[Crossref] | Zbl 1276.26006

[17] Takaya Nishiyama, Keiji Ohkubo, and Yasunari Shidama. The continuous functions on normed linear spaces. Formalized Mathematics, 12(3):269-275, 2004.

[18] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.

[19] Beata Perkowska. Functional sequence from a domain to a domain. Formalized Mathematics, 3(1):17-21, 1992.

[20] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.

[21] Yasunari Shidama. Banach space of bounded linear operators. Formalized Mathematics, 12(1):39-48, 2004.

[22] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

[23] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.