Fundamental Group of n-sphere for n ≥ 2
Marco Riccardi ; Artur Korniłowicz
Formalized Mathematics, Tome 20 (2012), p. 97-104 / Harvested from The Polish Digital Mathematics Library

Triviality of fundamental groups of spheres of dimension greater than 1 is proven, [17]

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:268254
@article{bwmeta1.element.doi-10_2478_v10037-012-0013-1,
     author = {Marco Riccardi and Artur Korni\l owicz},
     title = {Fundamental Group of n-sphere for n $\geq$ 2},
     journal = {Formalized Mathematics},
     volume = {20},
     year = {2012},
     pages = {97-104},
     zbl = {1276.57004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10037-012-0013-1}
}
Marco Riccardi; Artur Korniłowicz. Fundamental Group of n-sphere for n ≥ 2. Formalized Mathematics, Tome 20 (2012) pp. 97-104. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10037-012-0013-1/

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. | Zbl 06213858

[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.

[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.

[4] Czesław Bylinski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.

[5] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.

[6] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.

[7] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.

[8] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.

[9] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.

[10] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.

[11] Adam Grabowski. Introduction to the homotopy theory. Formalized Mathematics, 6(4):449-454, 1997.

[12] Adam Grabowski and Artur Korniłowicz. Algebraic properties of homotopies. FormalizedMathematics, 12(3):251-260, 2004.

[13] Artur Korniłowicz. The fundamental group of convex subspaces of En T. Formalized Mathematics, 12(3):295-299, 2004.

[14] Artur Korniłowicz. On the isomorphism of fundamental groups. Formalized Mathematics, 12(3):391-396, 2004.

[15] Artur Korniłowicz and Yasunari Shidama. Intersections of intervals and balls in En T. Formalized Mathematics, 12(3):301-306, 2004.

[16] Artur Korniłowicz, Yasunari Shidama, and Adam Grabowski. The fundamental group. Formalized Mathematics, 12(3):261-268, 2004.

[17] John M. Lee. Introduction to Topological Manifolds. Springer-Verlag, New York Berlin Heidelberg, 2000. | Zbl 0956.57001

[18] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.

[19] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990.

[20] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.

[21] Marco Riccardi. The definition of topological manifolds. Formalized Mathematics, 19(1):41-44, 2011, doi: 10.2478/v10037-011-0007-4.[Crossref] | Zbl 1276.57023

[22] Marco Riccardi. Planes and spheres as topological manifolds. Stereographic projection. Formalized Mathematics, 20(1):41-45, 2012, doi: 10.2478/v10037-012-0006-0.[Crossref] | Zbl 1276.57022

[23] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

[24] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

[25] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.