In this article, we formalize Z-module, that is a module over integer ring. Z-module is necassary for lattice problems, LLL (Lenstra-Lenstra-Lovász) base reduction algorithm and cryptographic systems with lattices [11].
@article{bwmeta1.element.doi-10_2478_v10037-012-0007-z, author = {Yuichi Futa and Hiroyuki Okazaki and Yasunari Shidama}, title = {Z-modules}, journal = {Formalized Mathematics}, volume = {20}, year = {2012}, pages = {47-59}, zbl = {1276.94012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10037-012-0007-z} }
Yuichi Futa; Hiroyuki Okazaki; Yasunari Shidama. Z-modules. Formalized Mathematics, Tome 20 (2012) pp. 47-59. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10037-012-0007-z/
Grzegorz Bancerek. Curried and uncurried functions. Formalized Mathematics, 1(3):537-541, 1990.
Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.
Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.
Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems: A cryptographic perspective (the international series in engineering and computer science). 2002. | Zbl 1140.94010
Christoph Schwarzweller. The binomial theorem for algebraic structures. Formalized Mathematics, 9(3):559-564, 2001.
Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
Stanisław Żukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215-222, 1990.