Elementary Introduction to Stochastic Finance in Discrete Time
Peter Jaeger
Formalized Mathematics, Tome 20 (2012), p. 1-5 / Harvested from The Polish Digital Mathematics Library

This article gives an elementary introduction to stochastic finance (in discrete time). A formalization of random variables is given and some elements of Borel sets are considered. Furthermore, special functions (for buying a present portfolio and the value of a portfolio in the future) and some statements about the relation between these functions are introduced. For details see: [8] (p. 185), [7] (pp. 12, 20), [6] (pp. 3-6).

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:267949
@article{bwmeta1.element.doi-10_2478_v10037-012-0001-5,
     author = {Peter Jaeger},
     title = {Elementary Introduction to Stochastic Finance in Discrete Time},
     journal = {Formalized Mathematics},
     volume = {20},
     year = {2012},
     pages = {1-5},
     zbl = {1276.91103},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10037-012-0001-5}
}
Peter Jaeger. Elementary Introduction to Stochastic Finance in Discrete Time. Formalized Mathematics, Tome 20 (2012) pp. 1-5. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10037-012-0001-5/

Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. | Zbl 06213858

Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.

Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.

Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.

Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definitions and basic properties of measurable functions. Formalized Mathematics, 9(3):495-500, 2001.

Hans Föllmer and Alexander Schied. Stochastic Finance: An Introduction in Discrete Time, volume 27 of Studies in Mathematics. de Gruyter, Berlin, 2nd edition, 2004. | Zbl 1126.91028

Hans-Otto Georgii. Stochastik, Einführung in die Wahrscheinlichkeitstheorie und Statistik. deGruyter, Berlin, 2 edition, 2004.

Achim Klenke. Wahrscheinlichkeitstheorie. Springer-Verlag, Berlin, Heidelberg, 2006.

Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.

Andrzej Nędzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.

Konrad Raczkowski and Andrzej Nędzusiak. Series. Formalized Mathematics, 2(4):449-452, 1991.

Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.

Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.

Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.

Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.