Representation Theorem for Stacks
Grzegorz Bancerek
Formalized Mathematics, Tome 19 (2011), p. 241-250 / Harvested from The Polish Digital Mathematics Library

In the paper the concept of stacks is formalized. As the main result the Theorem of Representation for Stacks is given. Formalization is done according to [13].

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:267761
@article{bwmeta1.element.doi-10_2478_v10037-011-0033-2,
     author = {Grzegorz Bancerek},
     title = {Representation Theorem for Stacks},
     journal = {Formalized Mathematics},
     volume = {19},
     year = {2011},
     pages = {241-250},
     zbl = {1276.14019},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10037-011-0033-2}
}
Grzegorz Bancerek. Representation Theorem for Stacks. Formalized Mathematics, Tome 19 (2011) pp. 241-250. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10037-011-0033-2/

Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. | Zbl 06213858

Grzegorz Bancerek. Filters - part II. Quotient lattices modulo filters and direct product of two lattices. Formalized Mathematics, 2(3):433-438, 1991.

Grzegorz Bancerek. Reduction relations. Formalized Mathematics, 5(4):469-478, 1996.

Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.

Grzegorz Bancerek and Andrzej Trybulec. Miscellaneous facts about functions. Formalized Mathematics, 5(4):485-492, 1996.

Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.

Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.

Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.

Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.

Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.

Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.

Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.

Grażyna Mirkowska and Andrzej Salwicki. Algorithmic Logic. PWN-Polish Scientific Publisher, 1987. | Zbl 1159.68360

Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990.

Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.

Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569-573, 1990.

Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313-319, 1990.

Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized Mathematics, 1(1):85-89, 1990.