Cayley's Theorem
Artur Korniłowicz
Formalized Mathematics, Tome 19 (2011), p. 223-225 / Harvested from The Polish Digital Mathematics Library

The article formalizes the Cayley's theorem saying that every group G is isomorphic to a subgroup of the symmetric group on G.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:267872
@article{bwmeta1.element.doi-10_2478_v10037-011-0030-5,
     author = {Artur Korni\l owicz},
     title = {Cayley's Theorem},
     journal = {Formalized Mathematics},
     volume = {19},
     year = {2011},
     pages = {223-225},
     zbl = {1276.20002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10037-011-0030-5}
}
Artur Korniłowicz. Cayley's Theorem. Formalized Mathematics, Tome 19 (2011) pp. 223-225. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10037-011-0030-5/

Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. | Zbl 06213858

Grzegorz Bancerek. Monoids. Formalized Mathematics, 3(2):213-225, 1992.

Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.

Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.

Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.

Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.

Katarzyna Jankowska. Transpose matrices and groups of permutations. Formalized Mathematics, 2(5):711-717, 1991.

Artur Korniłowicz. The definition and basic properties of topological groups. Formalized Mathematics, 7(2):217-225, 1998.

Andrzej Trybulec. Classes of independent partitions. Formalized Mathematics, 9(3):623-625, 2001.

Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.

Wojciech A. Trybulec and Michał J. Trybulec. Homomorphisms and isomorphisms of groups. Quotient group. Formalized Mathematics, 2(4):573-578, 1991.