Third of a series of articles laying down the bases for classical first order model theory. Interpretation of a language in a universe set. Evaluation of a term in a universe. Truth evaluation of an atomic formula. Reassigning the value of a symbol in a given interpretation. Syntax and semantics of a non atomic formula are then defined concurrently (this point is explained in [16], 4.2.1). As a consequence, the evaluation of any w.f.f. string and the relation of logical implication are introduced. Depth of a formula. Definition of satisfaction and entailment (aka entailment or logical implication) relations, see [18] III.3.2 and III.4.1 respectively.
@article{bwmeta1.element.doi-10_2478_v10037-011-0027-0, author = {Marco Caminati}, title = {First Order Languages: Further Syntax and Semantics}, journal = {Formalized Mathematics}, volume = {19}, year = {2011}, pages = {179-192}, zbl = {1276.03032}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10037-011-0027-0} }
Marco Caminati. First Order Languages: Further Syntax and Semantics. Formalized Mathematics, Tome 19 (2011) pp. 179-192. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10037-011-0027-0/
Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
Grzegorz Bancerek. Curried and uncurried functions. Formalized Mathematics, 1(3):537-541, 1990.
Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. | Zbl 06213858
Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
Grzegorz Bancerek. Monoids. Formalized Mathematics, 3(2):213-225, 1992.
Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
Marco B. Caminati. Preliminaries to classical first order model theory. Formalized Mathematics, 19(3):155-167, 2011, doi: 10.2478/v10037-011-0025-2.[Crossref] | Zbl 1276.03030
Marco B. Caminati. Definition of first order language with arbitrary alphabet. Syntax of terms, atomic formulas and their subterms. Formalized Mathematics, 19(3):169-178, 2011, doi: 10.2478/v10037-011-0026-1.[Crossref] | Zbl 1276.03031
M. B. Caminati. Basic first-order model theory in Mizar. Journal of Formalized Reasoning, 3(1):49-77, 2010. | Zbl 1211.03024
Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
H. D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical logic. Springer, 1994.
Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathematics, 3(2):275-278, 1992.
Jarosław Kotowicz and Yuji Sakai. Properties of partial functions from a domain to the set of real numbers. Formalized Mathematics, 3(2):279-288, 1992.
Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics, 1(5):829-832, 1990.
Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
Edmund Woronowicz. Many-argument relations. Formalized Mathematics, 1(4):733-737, 1990.
Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.