Set of Points on Elliptic Curve in Projective Coordinates
Yuichi Futa ; Hiroyuki Okazaki ; Yasunari Shidama
Formalized Mathematics, Tome 19 (2011), p. 131-138 / Harvested from The Polish Digital Mathematics Library

In this article, we formalize a set of points on an elliptic curve over GF(p). Elliptic curve cryptography [10], whose security is based on a difficulty of discrete logarithm problem of elliptic curves, is important for information security.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:267455
@article{bwmeta1.element.doi-10_2478_v10037-011-0021-6,
     author = {Yuichi Futa and Hiroyuki Okazaki and Yasunari Shidama},
     title = {Set of Points on Elliptic Curve in Projective Coordinates},
     journal = {Formalized Mathematics},
     volume = {19},
     year = {2011},
     pages = {131-138},
     zbl = {1276.11090},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10037-011-0021-6}
}
Yuichi Futa; Hiroyuki Okazaki; Yasunari Shidama. Set of Points on Elliptic Curve in Projective Coordinates. Formalized Mathematics, Tome 19 (2011) pp. 131-138. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10037-011-0021-6/

Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.

Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. | Zbl 06213858

Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.

Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.

Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.

Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.

Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.

Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.

Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.

G. Seroussi I. Blake and N. Smart. Elliptic Curves in Cryptography. Number 265 in London Mathematical Society Lecture Note Series. Cambridge University Press, 1999.

Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.

Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.

Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990.

Christoph Schwarzweller. The ring of integers, euclidean rings and modulo integers. Formalized Mathematics, 8(1):29-34, 1999.

Christoph Schwarzweller. The binomial theorem for algebraic structures. Formalized Mathematics, 9(3):559-564, 2001.

Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.

Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.

Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.

Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.

Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.

Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized Mathematics, 1(1):85-89, 1990.