Mazur-Ulam Theorem
Artur Korniłowicz
Formalized Mathematics, Tome 19 (2011), p. 127-130 / Harvested from The Polish Digital Mathematics Library

The Mazur-Ulam theorem [15] has been formulated as two registrations: cluster bijective isometric -> midpoints-preserving Function of E, F; and cluster isometric midpoints-preserving -> Affine Function of E, F; A proof given by Jussi Väisälä [23] has been formalized.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:267439
@article{bwmeta1.element.doi-10_2478_v10037-011-0020-7,
     author = {Artur Korni\l owicz},
     title = {Mazur-Ulam Theorem},
     journal = {Formalized Mathematics},
     volume = {19},
     year = {2011},
     pages = {127-130},
     zbl = {1276.46005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10037-011-0020-7}
}
Artur Korniłowicz. Mazur-Ulam Theorem. Formalized Mathematics, Tome 19 (2011) pp. 127-130. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10037-011-0020-7/

Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.

Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Formalized Mathematics, 2(1):163-171, 1991.

Józef Białas and Yatsuka Nakamura. Dyadic numbers and T4 topological spaces. Formalized Mathematics, 5(3):361-366, 1996.

Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.

Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.

Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.

Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.

Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.

Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.

Hiroshi Imura, Morishige Kimura, and Yasunari Shidama. The differentiable functions on normed linear spaces. Formalized Mathematics, 12(3):321-327, 2004.

Artur Korniłowicz. Collective operations on number-membered sets. Formalized Mathematics, 17(2):99-115, 2009, doi: 10.2478/v10037-009-0011-0.[Crossref]

Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.

Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.

Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.

Stanisław Mazur and Stanisław Ulam. Sur les transformationes isométriques d'espaces vectoriels normés. C. R. Acad. Sci. Paris, (194):946-948, 1932. | Zbl 58.0423.01

Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.

Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.

Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.

Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991.

Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341-347, 2003.

Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.

Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

Jussi Väisälä. A proof of the Mazur-Ulam theorem.

Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.