The Definition of Topological Manifolds
Marco Riccardi
Formalized Mathematics, Tome 19 (2011), p. 41-44 / Harvested from The Polish Digital Mathematics Library

This article introduces the definition of n-locally Euclidean topological spaces and topological manifolds [13].

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:267195
@article{bwmeta1.element.doi-10_2478_v10037-011-0007-4,
     author = {Marco Riccardi},
     title = {The Definition of Topological Manifolds},
     journal = {Formalized Mathematics},
     volume = {19},
     year = {2011},
     pages = {41-44},
     zbl = {1276.57023},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10037-011-0007-4}
}
Marco Riccardi. The Definition of Topological Manifolds. Formalized Mathematics, Tome 19 (2011) pp. 41-44. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10037-011-0007-4/

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.

[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.

[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.

[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.

[5] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.

[6] Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.

[7] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.

[8] Adam Grabowski. Properties of the product of compact topological spaces. Formalized Mathematics, 8(1):55-59, 1999.

[9] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.

[10] Zbigniew Karno. Separated and weakly separated subspaces of topological spaces. Formalized Mathematics, 2(5):665-674, 1991.

[11] Zbigniew Karno. The lattice of domains of an extremally disconnected space. Formalized Mathematics, 3(2):143-149, 1992.

[12] Artur Korniłowicz and Yasunari Shidama. Intersections of intervals and balls in εn/T. Formalized Mathematics, 12(3):301-306, 2004.

[13] John M. Lee. Introduction to Topological Manifolds. Springer-Verlag, New York Berlin Heidelberg, 2000. | Zbl 0956.57001

[14] Robert Milewski. Bases of continuous lattices. Formalized Mathematics, 7(2):285-294, 1998.

[15] Beata Padlewska. Locally connected spaces. Formalized Mathematics, 2(1):93-96, 1991.

[16] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.

[17] Karol Pąk. Basic properties of metrizable topological spaces. Formalized Mathematics, 17(3):201-205, 2009, doi: 10.2478/v10037-009-0024-8.[Crossref]

[18] Bartłomiej Skorulski. First-countable, sequential, and Frechet spaces. Formalized Mathematics, 7(1):81-86, 1998.

[19] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.

[20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.