This article describes some properties of p-groups and some properties of commutative p-groups.
@article{bwmeta1.element.doi-10_2478_v10037-011-0002-9,
author = {Xiquan Liang and Dailu Li},
title = {
Some Properties of
p
-Groups and Commutative
p
-Groups
},
journal = {Formalized Mathematics},
volume = {19},
year = {2011},
pages = {11-15},
zbl = {1276.20022},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10037-011-0002-9}
}
Xiquan Liang; Dailu Li.
Some Properties of
p
-Groups and Commutative
p
-Groups
. Formalized Mathematics, Tome 19 (2011) pp. 11-15. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10037-011-0002-9/
[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. | Zbl 06213858
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
[4] Marco Riccardi. The Sylow theorems. Formalized Mathematics, 15(3):159-165, 2007, doi:10.2478/v10037-007-0018-3.[Crossref]
[5] Dariusz Surowik. Cyclic groups and some of their properties - part I. Formalized Mathematics, 2(5):623-627, 1991.
[6] Wojciech A. Trybulec. Classes of conjugation. Normal subgroups. Formalized Mathematics, 1(5):955-962, 1990.
[7] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[8] Wojciech A. Trybulec. Subgroup and cosets of subgroups. Formalized Mathematics, 1(5):855-864, 1990.
[9] Wojciech A. Trybulec. Commutator and center of a group. Formalized Mathematics, 2(4):461-466, 1991.
[10] Wojciech A. Trybulec. Lattice of subgroups of a group. Frattini subgroup. Formalized Mathematics, 2(1):41-47, 1991.
[11] Wojciech A. Trybulec and Michał J. Trybulec. Homomorphisms and isomorphisms of groups. Quotient group. Formalized Mathematics, 2(4):573-578, 1991.
[12] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.