Miscellaneous Facts about Open Functions and Continuous Functions
Artur Korniłowicz
Formalized Mathematics, Tome 18 (2010), p. 171-174 / Harvested from The Polish Digital Mathematics Library

In this article we give definitions of open functions and continuous functions formulated in terms of "balls" of given topological spaces.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:267487
@article{bwmeta1.element.doi-10_2478_v10037-010-0019-5,
     author = {Artur Korni\l owicz},
     title = {Miscellaneous Facts about Open Functions and Continuous Functions},
     journal = {Formalized Mathematics},
     volume = {18},
     year = {2010},
     pages = {171-174},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10037-010-0019-5}
}
Artur Korniłowicz. Miscellaneous Facts about Open Functions and Continuous Functions. Formalized Mathematics, Tome 18 (2010) pp. 171-174. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10037-010-0019-5/

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. | Zbl 06213858

[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.

[3] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481-485, 1991.

[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.

[5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.

[6] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.

[7] Agata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.

[8] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.

[9] Artur Korniłowicz and Yasunari Shidama. Intersections of intervals and balls in ϵn/T. Formalized Mathematics, 12(3):301-306, 2004.

[10] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.

[11] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.

[12] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

[13] Mariusz Żynel and Adam Guzowski. T0 topological spaces. Formalized Mathematics, 5(1):75-77, 1996.