This article describes the concept of the nilpotent group and some properties of the nilpotent groups.
@article{bwmeta1.element.doi-10_2478_v10037-010-0007-9, author = {Dailu Li and Xiquan Liang and Yanhong Men}, title = {Nilpotent Groups}, journal = {Formalized Mathematics}, volume = {18}, year = {2010}, pages = {53-56}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10037-010-0007-9} }
Dailu Li; Xiquan Liang; Yanhong Men. Nilpotent Groups. Formalized Mathematics, Tome 18 (2010) pp. 53-56. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10037-010-0007-9/
[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. | Zbl 06213858
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Wojciech A. Trybulec. Classes of conjugation. Normal subgroups. Formalized Mathematics, 1(5):955-962, 1990.
[6] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[7] Wojciech A. Trybulec. Subgroup and cosets of subgroups. Formalized Mathematics, 1(5):855-864, 1990.
[8] Wojciech A. Trybulec. Commutator and center of a group. Formalized Mathematics, 2(4):461-466, 1991.
[9] Wojciech A. Trybulec and Michał J. Trybulec. Homomorphisms and isomorphisms of groups. Quotient group. Formalized Mathematics, 2(4):573-578, 1991.
[10] Katarzyna Zawadzka. Solvable groups. Formalized Mathematics, 5(1):145-147, 1996.