Nilpotent Groups
Dailu Li ; Xiquan Liang ; Yanhong Men
Formalized Mathematics, Tome 18 (2010), p. 53-56 / Harvested from The Polish Digital Mathematics Library

This article describes the concept of the nilpotent group and some properties of the nilpotent groups.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:267066
@article{bwmeta1.element.doi-10_2478_v10037-010-0007-9,
     author = {Dailu Li and Xiquan Liang and Yanhong Men},
     title = {Nilpotent Groups},
     journal = {Formalized Mathematics},
     volume = {18},
     year = {2010},
     pages = {53-56},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10037-010-0007-9}
}
Dailu Li; Xiquan Liang; Yanhong Men. Nilpotent Groups. Formalized Mathematics, Tome 18 (2010) pp. 53-56. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10037-010-0007-9/

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. | Zbl 06213858

[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.

[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.

[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.

[5] Wojciech A. Trybulec. Classes of conjugation. Normal subgroups. Formalized Mathematics, 1(5):955-962, 1990.

[6] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.

[7] Wojciech A. Trybulec. Subgroup and cosets of subgroups. Formalized Mathematics, 1(5):855-864, 1990.

[8] Wojciech A. Trybulec. Commutator and center of a group. Formalized Mathematics, 2(4):461-466, 1991.

[9] Wojciech A. Trybulec and Michał J. Trybulec. Homomorphisms and isomorphisms of groups. Quotient group. Formalized Mathematics, 2(4):573-578, 1991.

[10] Katarzyna Zawadzka. Solvable groups. Formalized Mathematics, 5(1):145-147, 1996.