Small Inductive Dimension of Topological Spaces. Part II
Karol Pąk
Formalized Mathematics, Tome 17 (2009), p. 219-222 / Harvested from The Polish Digital Mathematics Library

In this paper we present basic properties of n-dimensional topological spaces according to the book [10]. In the article the formalization of Section 1.5 is completed.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:266738
@article{bwmeta1.element.doi-10_2478_v10037-009-0027-5,
     author = {Karol P\k ak},
     title = {Small Inductive Dimension of Topological Spaces. Part II},
     journal = {Formalized Mathematics},
     volume = {17},
     year = {2009},
     pages = {219-222},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10037-009-0027-5}
}
Karol Pąk. Small Inductive Dimension of Topological Spaces. Part II. Formalized Mathematics, Tome 17 (2009) pp. 219-222. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10037-009-0027-5/

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.

[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. | Zbl 06213858

[3] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.

[4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.

[5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.

[6] Leszek Borys. Paracompact and metrizable spaces. Formalized Mathematics, 2(4):481-485, 1991.

[7] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.

[8] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.

[9] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.

[10] Ryszard Engelking. Teoria wymiaru. PWN, 1981.

[11] Robert Milewski. Bases of continuous lattices. Formalized Mathematics, 7(2):285-294, 1998.

[12] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.

[13] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.

[14] Karol Pąk. Small inductive dimension of topological spaces. Formalized Mathematics, 17(3):207-212, 2009, doi: 10.2478/v10037-009-0025-7.[Crossref]

[15] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991.

[16] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.

[17] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

[18] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1(1):231-237, 1990.