This article describes a rough subgroup with respect to a normal subgroup of a group, and some properties of the lower and the upper approximations in a group.
@article{bwmeta1.element.doi-10_2478_v10037-009-0026-6, author = {Xiquan Liang and Dailu Li}, title = {On Rough Subgroup of a Group}, journal = {Formalized Mathematics}, volume = {17}, year = {2009}, pages = {213-217}, zbl = {1276.20022}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10037-009-0026-6} }
Xiquan Liang; Dailu Li. On Rough Subgroup of a Group. Formalized Mathematics, Tome 17 (2009) pp. 213-217. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10037-009-0026-6/
[1] Wojciech A. Trybulec. Classes of conjugation. Normal subgroups. Formalized Mathematics, 1(5):955-962, 1990.
[2] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[3] Wojciech A. Trybulec. Subgroup and cosets of subgroups. Formalized Mathematics, 1(5):855-864, 1990.
[4] Wojciech A. Trybulec. Lattice of subgroups of a group. Frattini subgroup. Formalized Mathematics, 2(1):41-47, 1991.
[5] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.