Basic Properties of Even and Odd Functions
Bo Li ; Yanhong Men
Formalized Mathematics, Tome 17 (2009), p. 187-192 / Harvested from The Polish Digital Mathematics Library

In this article we present definitions, basic properties and some examples of even and odd functions [6].

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:267217
@article{bwmeta1.element.doi-10_2478_v10037-009-0022-x,
     author = {Bo Li and Yanhong Men},
     title = {Basic Properties of Even and Odd Functions},
     journal = {Formalized Mathematics},
     volume = {17},
     year = {2009},
     pages = {187-192},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10037-009-0022-x}
}
Bo Li; Yanhong Men. Basic Properties of Even and Odd Functions. Formalized Mathematics, Tome 17 (2009) pp. 187-192. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10037-009-0022-x/

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.

[2] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.

[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.

[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.

[5] Pacharapokin Chanapat, Kanchun, and Hiroshi Yamazaki. Formulas and identities of trigonometric functions. Formalized Mathematics, 12(2):139-141, 2004.

[6] Chuanzhang Chen. Mathematical Analysis. Higher Education Press, Beijing, 1978.

[7] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.

[8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.

[9] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.

[10] Xiquan Liang and Bing Xie. Inverse trigonometric functions arctan and arccot. Formalized Mathematics, 16(2):147-158, 2008, doi:10.2478/v10037-008-0021-3.[Crossref]

[11] Takashi Mitsuishi and Yuguang Yang. Properties of the trigonometric function. Formalized Mathematics, 8(1):103-106, 1999.

[12] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.

[13] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.

[14] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341-347, 2003.

[15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

[16] Peng Wang and Bo Li. Several differentiation formulas of special functions. Part V. Formalized Mathematics, 15(3):73-79, 2007, doi:10.2478/v10037-007-0009-4.[Crossref]

[17] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

[18] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

[19] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998.