Riemann Integral of Functions from R into R n
Keiichi Miyajima ; Yasunari Shidama
Formalized Mathematics, Tome 17 (2009), p. 179-185 / Harvested from The Polish Digital Mathematics Library

In this article, we define the Riemann Integral of functions from R into Rn, and prove the linearity of this operator. The presented method is based on [21].

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:267222
@article{bwmeta1.element.doi-10_2478_v10037-009-0021-y,
     author = {Keiichi Miyajima and Yasunari Shidama},
     title = {
      Riemann Integral of Functions from R into
      
        R
        n
      
    },
     journal = {Formalized Mathematics},
     volume = {17},
     year = {2009},
     pages = {179-185},
     zbl = {1276.26026},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10037-009-0021-y}
}
Keiichi Miyajima; Yasunari Shidama. 
      Riemann Integral of Functions from R into
      
        R
        n
      
    . Formalized Mathematics, Tome 17 (2009) pp. 179-185. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10037-009-0021-y/

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.

[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.

[3] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.

[4] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.

[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.

[6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.

[7] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.

[8] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.

[9] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.

[10] Noboru Endou and Artur Korniłowicz. The definition of the Riemann definite integral and some related lemmas. Formalized Mathematics, 8(1):93-102, 1999.

[11] Noboru Endou and Yasunari Shidama. Completeness of the real Euclidean space. Formalized Mathematics, 13(4):577-580, 2005.

[12] Noboru Endou, Yasunari Shidama, and Keiichi Miyajima. Partial differentiation on normed linear spaces Rn. Formalized Mathematics, 15(2):65-72, 2007, doi:10.2478/v10037-007-0008-5.[Crossref]

[13] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definition of integrability for partial functions from R to R and integrability for continuous functions. Formalized Mathematics, 9(2):281-284, 2001.

[14] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Scalar multiple of Riemann definite integral. Formalized Mathematics, 9(1):191-196, 2001.

[15] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.

[16] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.

[17] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.

[18] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.

[19] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.

[20] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.

[21] Murray R. Spiegel. Theory and Problems of Vector Analysis. McGraw-Hill, 1974.

[22] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

[23] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

[24] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.