This article presents the proof of Kolmogorov's zero-one law in probability theory. The independence of a family of σ-fields is defined and basic theorems on it are given.
@article{bwmeta1.element.doi-10_2478_v10037-009-0008-8, author = {Agnes Doll}, title = {Kolmogorov's Zero-One Law}, journal = {Formalized Mathematics}, volume = {17}, year = {2009}, pages = {73-77}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10037-009-0008-8} }
Agnes Doll. Kolmogorov's Zero-One Law. Formalized Mathematics, Tome 17 (2009) pp. 73-77. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10037-009-0008-8/
[1] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[7] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[8] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[9] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[10] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[11] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[12] Franz Merkl. Dynkin's lemma in measure theory. Formalized Mathematics, 9(3):591-595, 2001.
[13] Andrzej Nędzusiak. Probability. Formalized Mathematics, 1(4):745-749, 1990.
[14] Andrzej Nędzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.
[15] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[16] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. Formalized Mathematics, 5(2):233-236, 1996.
[17] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[18] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1(1):187-190, 1990.
[19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[20] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[21] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.