In this article the notion of the power of an element of BCI-algebra and its period in the book [11], sections 1.4 to 1.5 are firstly given. Then the definition of BCI-homomorphism is defined and the fundamental theorem of homomorphism, the first isomorphism theorem and the second isomorphism theorem are proved following the book [9], section 1.6.MML identifier: BCIALG 6, version: 7.9.03 4.108.1028
@article{bwmeta1.element.doi-10_2478_v10037-008-0045-8, author = {Yuzhong Ding and Fuguo Ge and Chenglong Wu}, title = {BCI-homomorphisms}, journal = {Formalized Mathematics}, volume = {16}, year = {2008}, pages = {371-376}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10037-008-0045-8} }
Yuzhong Ding; Fuguo Ge; Chenglong Wu. BCI-homomorphisms. Formalized Mathematics, Tome 16 (2008) pp. 371-376. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10037-008-0045-8/
[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. | Zbl 06213858
[2] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[6] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[7] Yuzhong Ding. Several classes of BCI-algebras and their properties. Formalized Mathematics, 15(1):1-9, 2007.
[8] Yuzhong Ding and Zhiyong Pang. Congruences and quotient algebras of BCI-algebras. Formalized Mathematics, 15(4):175-180, 2007.
[9] Yisheng Huang. BCI-algebras. Science Press, 2006.
[10] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics, 1(5):829-832, 1990.
[11] Jie Meng and YoungLin Liu. An Introduction to BCI-algebras. Shaanxi Scientific and Technological Press, 2001.
[12] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990.
[13] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[14] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[15] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.