Fatou's Lemma and the Lebesgue's Convergence Theorem
Noboru Endou ; Keiko Narita ; Yasunari Shidama
Formalized Mathematics, Tome 16 (2008), p. 305-309 / Harvested from The Polish Digital Mathematics Library

In this article we prove the Fatou's Lemma and Lebesgue's Convergence Theorem [10].MML identifier: MESFUN10, version: 7.9.01 4.101.1015

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:267127
@article{bwmeta1.element.doi-10_2478_v10037-008-0037-8,
     author = {Noboru Endou and Keiko Narita and Yasunari Shidama},
     title = {Fatou's Lemma and the Lebesgue's Convergence Theorem},
     journal = {Formalized Mathematics},
     volume = {16},
     year = {2008},
     pages = {305-309},
     zbl = {1321.46026},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10037-008-0037-8}
}
Noboru Endou; Keiko Narita; Yasunari Shidama. Fatou's Lemma and the Lebesgue's Convergence Theorem. Formalized Mathematics, Tome 16 (2008) pp. 305-309. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10037-008-0037-8/

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.

[2] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Formalized Mathematics, 2(1):163-171, 1991.

[3] Józef Białas. Series of positive real numbers. Measure theory. Formalized Mathematics, 2(1):173-183, 1991.

[4] Józef Białas. The σ-additive measure theory. Formalized Mathematics, 2(2):263-270, 1991.

[5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.

[6] Noboru Endou and Yasunari Shidama. Integral of measurable function. Formalized Mathematics, 14(2):53-70, 2006.

[7] Noboru Endou, Yasunari Shidama, and Keiko Narita. Egoroff's theorem. Formalized Mathematics, 16(1):57-63, 2008. | Zbl 1298.46005

[8] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Basic properties of extended real numbers. Formalized Mathematics, 9(3):491-494, 2001.

[9] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definitions and basic properties of measurable functions. Formalized Mathematics, 9(3):495-500, 2001.

[10] P. R. Halmos. Measure Theory. Springer-Verlag, 1987.

[11] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.

[12] Andrzej Nedzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.

[13] Beata Perkowska. Functional sequence from a domain to a domain. Formalized Mathematics, 3(1):17-21, 1992.

[14] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.

[15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

[16] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

[17] Hiroshi Yamazaki, Noboru Endou, Yasunari Shidama, and Hiroyuki Okazaki. Inferior limit, superior limit and convergence of sequences of extended real numbers. Formalized Mathematics, 15(4):231-236, 2007.