It is known that commutative BCK-algebras form a variety, but BCK-algebras do not [4]. Therefore H. Yutani introduced the notion of quasicommutative BCK-algebras. In this article we first present the notion and general theory of quasi-commutative BCI-algebras. Then we discuss the reduction of the type of quasi-commutative BCK-algebras and some special classes of quasicommutative BCI-algebras.
@article{bwmeta1.element.doi-10_2478_v10037-008-0030-2, author = {Tao Sun and Weibo Pan and Chenglong Wu and Xiquan Liang}, title = {General Theory of Quasi-Commutative BCI-algebras}, journal = {Formalized Mathematics}, volume = {16}, year = {2008}, pages = {253-258}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10037-008-0030-2} }
Tao Sun; Weibo Pan; Chenglong Wu; Xiquan Liang. General Theory of Quasi-Commutative BCI-algebras. Formalized Mathematics, Tome 16 (2008) pp. 253-258. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10037-008-0030-2/
[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Yuzhong Ding. Several classes of BCI-algebras and their properties. Formalized Mathematics, 15(1):1-9, 2007.
[3] Yuzhong Ding and Zhiyong Pang. Congruences and quotient algebras of BCI-algebras. Formalized Mathematics, 15(4):175-180, 2007.
[4] Jie Meng and YoungLin Liu. An Introduction to BCI-algebras. Shaanxi Scientific and Technological Press, 2001.
[5] Tao Sun, Dahai Hu, and Xiquan Liang. Several classes of BCK-algebras and their properties. Formalized Mathematics, 15(4):237-242, 2007.
[6] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1(1):187-190, 1990.
[7] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.