This article provides the definition of linear temporal logic (LTL) and its properties relevant to model checking based on [9]. Mizar formalization of LTL language and satisfiability is based on [2, 3].
@article{bwmeta1.element.doi-10_2478_v10037-008-0028-9, author = {Kazuhisa Ishida}, title = {Model Checking. Part II}, journal = {Formalized Mathematics}, volume = {16}, year = {2008}, pages = {231-245}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10037-008-0028-9} }
Kazuhisa Ishida. Model Checking. Part II. Formalized Mathematics, Tome 16 (2008) pp. 231-245. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10037-008-0028-9/
[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. | Zbl 06213858
[2] Grzegorz Bancerek. A model of ZF set theory language. Formalized Mathematics, 1(1):131-145, 1990.
[3] Grzegorz Bancerek. Models and satisfiability. Formalized Mathematics, 1(1):191-199, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[5] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[8] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[9] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.
[10] Kazuhisa Ishida. Model checking. Part I. Formalized Mathematics, 14(4):171-186, 2006.
[11] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[12] Edmund Woronowicz. Many-argument relations. Formalized Mathematics, 1(4):733-737, 1990.