Invertibility of Matrices of Field Elements
Yatsuka Nakamura ; Kunio Oniumi ; Wenpai Chang
Formalized Mathematics, Tome 16 (2008), p. 195-202 / Harvested from The Polish Digital Mathematics Library

In this paper the theory of invertibility of matrices of field elements (see e.g. [5], [6]) is developed. The main purpose of this article is to prove that the left invertibility and the right invertibility are equivalent for a matrix of field elements. To prove this, we introduced a special transformation of matrix to some canonical forms. Other concepts as zero vector and base vectors of field elements are also introduced as a preparation.MML identifier: MATRIX14, version: 7.9.01 4.101.1015

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:267371
@article{bwmeta1.element.doi-10_2478_v10037-008-0025-z,
     author = {Yatsuka Nakamura and Kunio Oniumi and Wenpai Chang},
     title = {Invertibility of Matrices of Field Elements},
     journal = {Formalized Mathematics},
     volume = {16},
     year = {2008},
     pages = {195-202},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10037-008-0025-z}
}
Yatsuka Nakamura; Kunio Oniumi; Wenpai Chang. Invertibility of Matrices of Field Elements. Formalized Mathematics, Tome 16 (2008) pp. 195-202. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10037-008-0025-z/

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.

[2] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.

[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.

[4] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.

[5] Shigeru Furuya. Matrix and Determinant. Baifuukan (in Japanese), 1957.

[6] Felix R. Gantmacher. The Theory of Matrices. AMS Chelsea Publishing, 1959. | Zbl 0022.31503

[7] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.

[8] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.

[9] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.

[10] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.

[11] Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics, 1(5):979-981, 1990.

[12] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.

[13] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.

[14] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

[15] Hiroshi Yamazaki, Yoshinori Fujisawa, and Yatsuka Nakamura. On replace function and swap function for finite sequences. Formalized Mathematics, 9(3):471-474, 2001.

[16] Xiaopeng Yue, Xiquan Liang, and Zhongpin Sun. Some properties of some special matrices. Formalized Mathematics, 13(4):541-547, 2005.

[17] Katarzyna Zawadzka. The sum and product of finite sequences of elements of a field. Formalized Mathematics, 3(2):205-211, 1992.

[18] Katarzyna Zawadzka. The product and the determinant of matrices with entries in a field. Formalized Mathematics, 4(1):1-8, 1993.