In this article we prove the Monotone Convergence Theorem [16].MML identifier: MESFUNC9, version: 7.8.10 4.100.1011
@article{bwmeta1.element.doi-10_2478_v10037-008-0023-1, author = {Noboru Endou and Keiko Narita and Yasunari Shidama}, title = {The Lebesgue Monotone Convergence Theorem}, journal = {Formalized Mathematics}, volume = {16}, year = {2008}, pages = {167-175}, zbl = {1321.46022}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10037-008-0023-1} }
Noboru Endou; Keiko Narita; Yasunari Shidama. The Lebesgue Monotone Convergence Theorem. Formalized Mathematics, Tome 16 (2008) pp. 167-175. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10037-008-0023-1/
[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. | Zbl 06213858
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Formalized Mathematics, 2(1):163-171, 1991.
[4] Józef Białas. Series of positive real numbers. Measure theory. Formalized Mathematics, 2(1):173-183, 1991.
[5] Józef Białas. The σ-additive measure theory. Formalized Mathematics, 2(2):263-270, 1991.
[6] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[9] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[10] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[11] Noboru Endou and Yasunari Shidama. Integral of measurable function. Formalized Mathematics, 14(2):53-70, 2006.
[12] Noboru Endou, Yasunari Shidama, and Keiko Narita. Egoroff's theorem. Formalized Mathematics, 16(1):57-63, 2008. | Zbl 1298.46005
[13] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Basic properties of extended real numbers. Formalized Mathematics, 9(3):491-494, 2001.
[14] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definitions and basic properties of measurable functions. Formalized Mathematics, 9(3):495-500, 2001.
[15] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. The measurability of extended real valued functions. Formalized Mathematics, 9(3):525-529, 2001.
[16] P. R. Halmos. Measure Theory. Springer-Verlag, 1987.
[17] Andrzej Nedzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.
[18] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[19] Beata Perkowska. Functional sequence from a domain to a domain. Formalized Mathematics, 3(1):17-21, 1992.
[20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[21] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[22] Hiroshi Yamazaki, Noboru Endou, Yasunari Shidama, and Hiroyuki Okazaki. Inferior limit, superior limit and convergence of sequences of extended real numbers. Formalized Mathematics, 15(4):231-236, 2007.