Inverse Trigonometric Functions Arcsec and Arccosec
Bing Xie ; Xiquan Liang ; Fuguo Ge
Formalized Mathematics, Tome 16 (2008), p. 159-165 / Harvested from The Polish Digital Mathematics Library

This article describes definitions of inverse trigonometric functions arcsec and arccosec, as well as their main properties.MML identifier: SINCOS10, version: 7.8.10 4.100.1011

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:266610
@article{bwmeta1.element.doi-10_2478_v10037-008-0022-2,
     author = {Bing Xie and Xiquan Liang and Fuguo Ge},
     title = {Inverse Trigonometric Functions Arcsec and Arccosec},
     journal = {Formalized Mathematics},
     volume = {16},
     year = {2008},
     pages = {159-165},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10037-008-0022-2}
}
Bing Xie; Xiquan Liang; Fuguo Ge. Inverse Trigonometric Functions Arcsec and Arccosec. Formalized Mathematics, Tome 16 (2008) pp. 159-165. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10037-008-0022-2/

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.

[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.

[3] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.

[4] Pacharapokin Chanapat, Kanchun, and Hiroshi Yamazaki. Formulas and identities of trigonometric functions. Formalized Mathematics, 12(2):139-141, 2004.

[5] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.

[6] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.

[7] Jarosław Kotowicz. Properties of real functions. Formalized Mathematics, 1(4):781-786, 1990.

[8] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.

[9] Yatsuka Nakamura. Half open intervals in real numbers. Formalized Mathematics, 10(1):21-22, 2002.

[10] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787-791, 1990.

[11] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990.

[12] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.

[13] Andrzej Trybulec and Czesław Bylinski. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.

[14] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.

[15] Peng Wang and Bo Li. Several differentiation formulas of special functions. Part V. Formalized Mathematics, 15(3):73-79, 2007.

[16] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

[17] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998.