Banach Algebra of Bounded Functionals
Yasunari Shidama ; Hikofumi Suzuki ; Noboru Endou
Formalized Mathematics, Tome 16 (2008), p. 115-122 / Harvested from The Polish Digital Mathematics Library

In this article, we describe some basic properties of the Banach algebra which is constructed from all bounded functionals.MML identifier: C0SP1, version: 7.8.10 4.99.1005

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:266716
@article{bwmeta1.element.doi-10_2478_v10037-008-0017-z,
     author = {Yasunari Shidama and Hikofumi Suzuki and Noboru Endou},
     title = {Banach Algebra of Bounded Functionals},
     journal = {Formalized Mathematics},
     volume = {16},
     year = {2008},
     pages = {115-122},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10037-008-0017-z}
}
Yasunari Shidama; Hikofumi Suzuki; Noboru Endou. Banach Algebra of Bounded Functionals. Formalized Mathematics, Tome 16 (2008) pp. 115-122. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10037-008-0017-z/

[1] Jonathan Backer, Piotr Rudnicki, and Christoph Schwarzweller. Ring ideals. Formalized Mathematics, 9(3):565-582, 2001.

[2] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.

[3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.

[4] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.

[5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.

[6] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.

[7] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.

[8] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in ε2. Formalized Mathematics, 6(3):427-440, 1997.

[9] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.

[10] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.

[11] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.

[12] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.

[13] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.

[14] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preliminaries to circuits, I. Formalized Mathematics, 5(2):167-172, 1996.

[15] Henryk Oryszczyszyn and Krzysztof Prażmowski. Real functions spaces. Formalized Mathematics, 1(3):555-561, 1990.

[16] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.

[17] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.

[18] Yasunari Shidama. The Banach algebra of bounded linear operators. Formalized Mathematics, 12(2):103-108, 2004.

[19] Yasunari Shidama. Banach space of bounded linear operators. Formalized Mathematics, 12(1):39-48, 2004.

[20] Yasumasa Suzuki, Noboru Endou, and Yasunari Shidama. Banach space of absolute summable real sequences. Formalized Mathematics, 11(4):377-380, 2003.

[21] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.

[22] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.

[23] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.

[24] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

[25] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.