Solutions of Linear Equations
Karol Pąk
Formalized Mathematics, Tome 16 (2008), p. 81-90 / Harvested from The Polish Digital Mathematics Library

In this paper I present the Kronecker-Capelli theorem which states that a system of linear equations has a solution if and only if the rank of its coefficient matrix is equal to the rank of its augmented matrix.MML identifier: MATRIX15, version: 7.8.09 4.97.1001

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:267191
@article{bwmeta1.element.doi-10_2478_v10037-008-0012-4,
     author = {Karol P\k ak},
     title = {Solutions of Linear Equations},
     journal = {Formalized Mathematics},
     volume = {16},
     year = {2008},
     pages = {81-90},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10037-008-0012-4}
}
Karol Pąk. Solutions of Linear Equations. Formalized Mathematics, Tome 16 (2008) pp. 81-90. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10037-008-0012-4/

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.

[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. | Zbl 06213858

[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.

[4] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.

[5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.

[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.

[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.

[8] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.

[9] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.

[10] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.

[11] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.

[12] Katarzyna Jankowska. Transpose matrices and groups of permutations. Formalized Mathematics, 2(5):711-717, 1991.

[13] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.

[14] Robert Milewski. Associated matrix of linear map. Formalized Mathematics, 5(3):339-345, 1996.

[15] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.

[16] Karol Pαk. Basic properties of determinants of square matrices over a field. Formalized Mathematics, 15(1):17-25, 2007.

[17] Karol Pαk. Basic properties of the rank of matrices over a field. Formalized Mathematics, 15(4):199-211, 2007.

[18] Karol Pαk and Andrzej Trybulec. Laplace expansion. Formalized Mathematics, 15(3):143-150, 2007.

[19] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.

[20] Wojciech A. Trybulec. Basis of vector space. Formalized Mathematics, 1(5):883-885, 1990.

[21] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.

[22] Wojciech A. Trybulec. Subspaces and cosets of subspaces in vector space. Formalized Mathematics, 1(5):865-870, 1990.

[23] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.

[24] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

[25] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

[26] Katarzyna Zawadzka. The sum and product of finite sequences of elements of a field. Formalized Mathematics, 3(2):205-211, 1992.

[27] Katarzyna Zawadzka. The product and the determinant of matrices with entries in a field. Formalized Mathematics, 4(1):1-8, 1993.

[28] Mariusz Żynel. The Steinitz theorem and the dimension of a vector space. Formalized Mathematics, 5(3):423-428, 1996.