Gauss Lemma and Law of Quadratic Reciprocity
Li Yan ; Xiquan Liang ; Junjie Zhao
Formalized Mathematics, Tome 16 (2008), p. 23-28 / Harvested from The Polish Digital Mathematics Library

In this paper, we defined the quadratic residue and proved its fundamental properties on the base of some useful theorems. Then we defined the Legendre symbol and proved its useful theorems [14], [12]. Finally, Gauss Lemma and Law of Quadratic Reciprocity are proven.MML identifier: INT 5, version: 7.8.05 4.89.993

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:266986
@article{bwmeta1.element.doi-10_2478_v10037-008-0004-4,
     author = {Li Yan and Xiquan Liang and Junjie Zhao},
     title = {Gauss Lemma and Law of Quadratic Reciprocity},
     journal = {Formalized Mathematics},
     volume = {16},
     year = {2008},
     pages = {23-28},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10037-008-0004-4}
}
Li Yan; Xiquan Liang; Junjie Zhao. Gauss Lemma and Law of Quadratic Reciprocity. Formalized Mathematics, Tome 16 (2008) pp. 23-28. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10037-008-0004-4/

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.

[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. | Zbl 06213858

[3] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.

[4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.

[5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.

[6] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.

[7] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.

[8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.

[9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.

[10] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.

[11] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.

[12] Zhang Dexin. Integer Theory. Science Publication, China, 1965.

[13] Yoshinori Fujisawa, Yasushi Fuwa, and Hidetaka Shimizu. Public-key cryptography and Pepin's test for the primality of Fermat numbers. Formalized Mathematics, 7(2):317-321, 1998.

[14] Hua Loo Keng. Introduction to Number Theory. Beijing Science Publication, China, 1957.

[15] Andrzej Kondracki. The Chinese Remainder Theorem. Formalized Mathematics, 6(4):573-577, 1997.

[16] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.

[17] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics, 1(5):829-832, 1990.

[18] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.

[19] Dariusz Surowik. Cyclic groups and some of their properties - part I. Formalized Mathematics, 2(5):623-627, 1991.

[20] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.

[21] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

[22] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

[23] Bo Zhang, Hiroshi Yamazaki, and Yatsuka Nakamura. Set sequences and monotone class. Formalized Mathematics, 13(4):435-441, 2005.