On the Representation of Natural Numbers in Positional Numeral Systems 1
Adam Naumowicz
Formalized Mathematics, Tome 14 (2006), p. 221-223 / Harvested from The Polish Digital Mathematics Library

In this paper we show that every natural number can be uniquely represented as a base-b numeral. The formalization is based on the proof presented in [11]. We also prove selected divisibility criteria in the base-10 numeral system.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:267383
@article{bwmeta1.element.doi-10_2478_v10037-006-0025-9,
     author = {Adam Naumowicz},
     title = {
      On the Representation of Natural Numbers in Positional Numeral Systems
      1
    },
     journal = {Formalized Mathematics},
     volume = {14},
     year = {2006},
     pages = {221-223},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10037-006-0025-9}
}
Adam Naumowicz. 
      On the Representation of Natural Numbers in Positional Numeral Systems
      1
    . Formalized Mathematics, Tome 14 (2006) pp. 221-223. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10037-006-0025-9/

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.

[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.

[3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.

[4] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.

[5] Rafał Kwiatek. Factorial and Newton coeffcients. Formalized Mathematics, 1(5):887-890, 1990.

[6] Library Committee of the Association of Mizar Users. Binary operations on numbers. To appear in Formalized Mathematics.

[7] Karol Pak. Stirling numbers of the second kind. Formalized Mathematics, 13(2):337-345, 2005.

[8] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125-130, 1991.

[9] Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213-216, 1991.

[10] Konrad Raczkowski and Andrzej Nędzusiak. Series. Formalized Mathematics, 2(4):449-452, 1991.

[11] Wacław Sierpiński. Elementary Theory of Numbers. PWN, Warsaw, 1964.

[12] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.

[13] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

[14] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.

[15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

[16] Tetsuya Tsunetou, Grzegorz Bancerek, and Yatsuka Nakamura. Zero-based finite sequences. Formalized Mathematics, 9(4):825-829, 2001.

[17] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.