In this paper, we define sequence dominated by 0, in which every initial fragment contains more zeroes than ones. If n ≥ 2 · m and n > 0, then the number of sequences dominated by 0 the length n including m of ones, is given by the formula [...] and satisfies the recurrence relation [...] Obviously, if n = 2 · m, then we obtain the recurrence relation for the Catalan numbers (starting from 0) [...] Using the above recurrence relation we can see that [...] where [...] and hence [...] MML identifier: CATALAN2, version: 7.8.03 4.75.958
@article{bwmeta1.element.doi-10_2478_v10037-006-0019-7, author = {Karol P\k ak}, title = { The Catalan Numbers. Part II 1 }, journal = {Formalized Mathematics}, volume = {14}, year = {2006}, pages = {153-159}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10037-006-0019-7} }
Karol Pąk. The Catalan Numbers. Part II 1 . Formalized Mathematics, Tome 14 (2006) pp. 153-159. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10037-006-0019-7/
[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Patrick Braselmann and Peter Koepke. Equivalences of inconsistency and Henkin models. Formalized Mathematics, 13(1):45-48, 2005.
[4] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[7] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[8] Dorota Czestochowska and Adam Grabowski. Catalan numbers. Formalized Mathematics, 12(3):351-353, 2004.
[9] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[10] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
[11] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[12] Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.
[13] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[14] Library Committee of the Association of Mizar Users. Binary operations on numbers. To appear in Formalized Mathematics.
[15] Karol Pak. Cardinal numbers and finite sets. Formalized Mathematics, 13(3):399-406, 2005.
[16] Karol Pak. Stirling numbers of the second kind. Formalized Mathematics, 13(2):337-345, 2005.
[17] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125-130, 1991.
[18] Konrad Raczkowski and Andrzej Nedzusiak. Series. Formalized Mathematics, 2(4):449-452, 1991.
[19] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
[20] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[21] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[22] Andrzej Trybulec. Function domains and Fránkel operator. Formalized Mathematics, 1(3):495-500, 1990.
[23] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[24] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[25] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[26] Tetsuya Tsunetou, Grzegorz Bancerek, and Yatsuka Nakamura. Zero-based finite sequences. Formalized Mathematics, 9(4):825-829, 2001.
[27] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[28] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.