Chordal Graphs
Broderick Arneson ; Piotr Rudnicki
Formalized Mathematics, Tome 14 (2006), p. 79-92 / Harvested from The Polish Digital Mathematics Library

We are formalizing [9, pp. 81-84] where chordal graphs are defined and their basic characterization is given. This formalization is a part of the M.Sc. work of the first author under supervision of the second author.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:266650
@article{bwmeta1.element.doi-10_2478_v10037-006-0010-3,
     author = {Broderick Arneson and Piotr Rudnicki},
     title = {Chordal Graphs},
     journal = {Formalized Mathematics},
     volume = {14},
     year = {2006},
     pages = {79-92},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10037-006-0010-3}
}
Broderick Arneson; Piotr Rudnicki. Chordal Graphs. Formalized Mathematics, Tome 14 (2006) pp. 79-92. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10037-006-0010-3/

[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.

[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.

[6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.

[7] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.

[8] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.

[9] M. Ch. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York, 1980.

[10] Gilbert Lee. Trees and Graph Components. Formalized Mathematics, 13(2):271-277, 2005.

[11] Gilbert Lee. Walks in Graphs. Formalized Mathematics, 13(2):253-269, 2005.

[12] Gilbert Lee and Piotr Rudnicki. Alternative graph structures. Formalized Mathematics, 13(2):235-252, 2005.

[13] Yatsuka Nakamura and Piotr Rudnicki. Vertex sequences induced by chains. Formalized Mathematics, 5(3):297-304, 1996.

[14] Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem. Formalized Mathematics, 6(3):335-338, 1997.

[15] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.

[16] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.

[17] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.

[18] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

[19] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.

[20] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.

[21] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

[22] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.

[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. | Zbl 06213858

[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.