This article provides definitions of idempotent, nilpotent, involutory, self-reversible, similar, and congruent matrices, the trace of a matrix and their main properties.
@article{bwmeta1.element.doi-10_2478_v10037-006-0002-3, author = {Xiaopeng Yue and Dahai Hu and Xiquan Liang}, title = {Some Properties of Some Special Matrices. Part II}, journal = {Formalized Mathematics}, volume = {14}, year = {2006}, pages = {7-12}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_v10037-006-0002-3} }
Xiaopeng Yue; Dahai Hu; Xiquan Liang. Some Properties of Some Special Matrices. Part II. Formalized Mathematics, Tome 14 (2006) pp. 7-12. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_v10037-006-0002-3/
[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[3] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[4] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991. | Zbl 0751.54016
[5] Katarzyna Jankowska. Transpose matrices and groups of permutations. Formalized Mathematics, 2(5):711-717, 1991.
[6] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[7] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[8] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[9] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[10] Xiaopeng Yue, Xiquan Liang, and Zhongpin Sun. Some properties of some special matrices. Formalized Mathematics, 13(4):541-547, 2005.
[11] Katarzyna Zawadzka. The product and the determinant of matrices with entries in a field. Formalized Mathematics, 4(1):1-8, 1993.