On Gelfand-Mazur theorem on a class of F -algebras
E. Anjidani
Topological Algebra and its Applications, Tome 2 (2014), / Harvested from The Polish Digital Mathematics Library

A topological algebra A is said to be fundamental if there exists b > 1 such that for every sequence (xn) in A, (xn) is Cauchy whenever the sequence bn(xn − xn-1) tends to zero as n → ∞. Let A be a complex unital fundamental F-algebra with bounded elements such that A* separates the points on A. Then we prove that the spectrum σ(a) of every element a ∈ A is nonempty compact. Moreover, if A is a division algebra, then A is isomorphic to the complex numbers ℂ. This result is a generalization of Gelfand-Mazur theorem for a large class of F-algebras, containing both locally bounded algebras and locally convex algebras with bounded elements.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:266794
@article{bwmeta1.element.doi-10_2478_taa-2014-0004,
     author = {E. Anjidani},
     title = {
      On Gelfand-Mazur theorem on a class of
      F
      -algebras
    },
     journal = {Topological Algebra and its Applications},
     volume = {2},
     year = {2014},
     zbl = {1316.46040},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_taa-2014-0004}
}
E. Anjidani. 
      On Gelfand-Mazur theorem on a class of
      F
      -algebras
    . Topological Algebra and its Applications, Tome 2 (2014) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_taa-2014-0004/

[1] M. Abel, Topological algebras with idempotently pseudoconvex von Neumann bornology, Contemp. Math. 427 (2007) 15– 29. | Zbl 1125.46037

[2] M. Abel and W. ˙Z elazko, Topologically invertible elements and topological spectrum, Bull. Pol. Acad. Sc. Math. 54 (2006) 257–271. | Zbl 1114.46036

[3] G. R. Allan, A spectral theory for locally convex algebra, Proc. Landon Math. Soc. 115 (1965) 399–421. | Zbl 0138.38202

[4] E. Ansari Piri, A class of factorable topological algebra, Proceedings of the Edinburgh Mathematical Sociaty 33 (1990) 53– 59.

[5] R. Arens, Linear topological division algebras, Bull. Amer. Math. Soc. 53 (1947) 623–630. | Zbl 0031.25103

[6] V. M. Bogdan, On Frobenius, Mazur, and Gelfand-Mazur Theorems on Division Algebras, Quaestiones Mathematicae 29 (2006) 171–209. | Zbl 1126.46033

[7] F. Bonsall and J. Duncan, Complete normed algebras, Springer-Verlag, New York, Heidelberg and Berlin, 1973. | Zbl 0271.46039

[8] A. Ya. Helemskii, Banach and locally convex algebras, Oxford university press, 1993.

[9] A. Mallios, Topological algebras, selected topics, Mathematical Studies, North Holland, Amsterdam, 1986.

[10] W. Zelazko, A theorem on B0 division algebras, Bull. Polon. Acad. Sc. 8 (1960) 373–375. | Zbl 0095.31303

[11] W. Zelazko, F-algebras: Some results and open problems, Functional Analysis and its Applications 197 (2004) 317–326. | Zbl 1096.46028

[12] W. Zelazko, On the locally bounded and m-convex topological algebras, Studia Math. 19 (1960) 333–356. | Zbl 0096.08303

[13] W. Zelazko, continuous characters and joint topological spectrum, Control and Cybernetics 36 (2007) 859–864. | Zbl 1189.46040

[14] W. Zelazko, Selected Topics in Topological Alghebras, Aarhus Univ. Lecture Notes 31 1971.