Let G be a paratopological group. Then G is said to be pseudobounded (resp. ω-pseudobounded) if for every neighbourhood V of the identity e in G, there exists a natural number n such that G = Vn (resp.we have G = ∪ n∈N Vn). We show that every feebly compact (2-pseudocompact) pseudobounded (ω-pseudobounded) premeager paratopological group is a topological group. Also,we prove that if G is a totally ω-pseudobounded paratopological group such that G is a Lusin space, then is G a topological group. We present some examples of paratopological groups with interesting properties: (1) There exists a metrizable, zero-dimensional and pseudobounded topological group; (2) There exists a Hausdorff ω-pseudobounded paratopological group G such that G contains a dense subgroup which is not ω-pseudobounded; (3) There exists a Hausdorff connected paratopological group which is not ω-pseudobounded.
@article{bwmeta1.element.doi-10_2478_taa-2014-0003, author = {Fucai Lin and Shou Lin and Iv\'an S\'anchez}, title = {A note on pseudobounded paratopological groups}, journal = {Topological Algebra and its Applications}, volume = {2}, year = {2014}, zbl = {1311.54025}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_taa-2014-0003} }
Fucai Lin; Shou Lin; Iván Sánchez. A note on pseudobounded paratopological groups. Topological Algebra and its Applications, Tome 2 (2014) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_taa-2014-0003/
[1] O.T. Alas, M. Sanchis, Countably compact paratopological groups, Semigroup Forum 74 (2007) 423–438. [WoS] | Zbl 1125.22001
[2] A.V. Arhangel’skii, E.A. Reznichenko, Paratopological and semitopological groups versus topological groups, Topology Appl. 151 (2005) 107–119. | Zbl 1077.54023
[3] A.V. Arhangel’skii, M.G. Tkachenko, Topological groups and related structures, Atlantis Studies in Mathematics, Vol. I, Atlantis Press/World Scientific, Paris-Amsterdam, 2008.
[4] K. H. Azar, Bounded topological groups, arXiv: 1003.2876.
[5] T. Banakh, I. Guran, O. Ravsky, Characterizing meager paratopological groups, Applied General Topology, 12(1)(2011) 27– 33. | Zbl 1216.22003
[6] R. Engelkig, General Topology, Heldermann Verlag, Berlin, 1989.
[7] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis. Vol. I, Structure of Topological Groups, Integration Theory, Group Representations. Second edition. Fund. Prin. of Math. Sci., 115. (Springer-Verlag, Berlin-New York, 1979). | Zbl 0416.43001
[8] F. Lin and S. Lin, Pseudobounded or !-pseudobounded paratopological groups, Filomat, 25:3 (2011) 93–103. [WoS] | Zbl 1265.54133
[9] F. Lin and C. Liu, On paratopological groups, Topology Apply., 159 (2012) 2764–2773. [WoS] | Zbl 1276.54027
[10] O.V. Ravsky, Paratopological groups I, Matematychni Studii 16 (2001), No. 1, 37–48. [WoS] | Zbl 0989.22007
[11] O.V. Ravsky, Paratopological groups II, Matematychni Studii 17 (2002), No. 1, 93–101. [WoS] | Zbl 1018.22001
[12] O.V. Ravsky, Pseudocompact paratopological groups that are topological, http://arxiv.org/abs/1003.5343 (April 7, 2012).
[13] M. Sanchis, M.G. Tkachenko, Totally Lindelöf and totally !-narrow paratopological groups, Topology Apply. 155 (2007) 322–334.
[14] M. Tkachenko, Group reflection and precompact paratopological groups, Topological Algebra and its Applications, (2013) 22–30.
[15] M. Tkachenko, Embedding paratopological groups into topological products, Topol. Appl., 156(2009) 1298-1305. [WoS] | Zbl 1166.54016