For Hausdorff topological monoids, the concept of a unitary Cauchy net is a generalization of the concept of a fundamental sequence of reals. We consider properties and applications of such nets and of corresponding filters and prove, in particular, that the underlying set of a given monoid, endowed with the family of such filters, forms a Cauchy space whose convergence structure defines a uniform topology. A commutative monoid endowed with the corresponding uniformity is uniform. A distant purpose of the paper is to transfer the classical concepts of a completeness and of a completion into the theory of topological monoids.
@article{bwmeta1.element.doi-10_2478_taa-2013-0006, author = {Boris G. Averbukh}, title = {On unitary Cauchy filters on topological monoids}, journal = {Topological Algebra and its Applications}, volume = {1}, year = {2013}, pages = {46-59}, zbl = {1288.22001}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_taa-2013-0006} }
Boris G. Averbukh. On unitary Cauchy filters on topological monoids. Topological Algebra and its Applications, Tome 1 (2013) pp. 46-59. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_taa-2013-0006/
[1] J.H. Carruth, J.A. Hildebrant, R.J. Koch, The theory of topological semigroups, Pure and Applied Mathematics, Marcel Dekker Inc., New York, 1983. | Zbl 0515.22003
[2] R. Engelking, General topology. Rev. and compl. ed., Sigma Series in Pure Mathematics, 6., Berlin: Heldermann Verlag, 1989, viii + 529 pp., ISBN 3-88538-006-4, Zbl 0684.54001.
[3] H.H. Keller, Die Limes-Uniformisierbarkeit der Limesräume, Math. Ann., 1968, 176, 334-341. | Zbl 0155.50302
[4] E. Lowen-Colebunders, Function Classes of Cauchy Continuous Maps, Pure and Applied Mathematics, Marcel Dekker Inc., New York, 1989.
[5] D. Marxen, Uniform semigroups, Math. Ann., 1973, 202, 27-36. | Zbl 0234.22003
[6] J.F. Ramaley, O. Wyler, Cauchy spaces, http://repository.cmu.edu/math/ 97, 1968. | Zbl 0195.24402